VW(1)
NAME
vw - Vowpal Wabbit -- fast online learning tool
DESCRIPTION
- VW options:
- -a [ --audit ]
print weights of features
- -b [ --bit_precision ] arg
number of bits in the feature table
- -c [ --cache ]
Use a cache. The default is <data>.cache
- --cache_file arg
The location(s) of cache_file.
- -d [ --data ] arg
Example Set
- --daemon
read data from port 39523
- --decay_learning_rate arg (=0.707106769)
Set Decay factor for learning_rate between passes
- -f [ --final_regressor ] arg
Final regressor
- -h [ --help ]
Output Arguments
- --version
Version information
- -i [ --initial_regressor ] arg
Initial regressor(s)
- --initial_t arg (=1)
initial t value
- --min_prediction arg
Smallest prediction to output
- --max_prediction arg
Largest prediction to output
- --multisource arg
multiple sources for daemon input
- --noop do no learning
- --port arg
port to listen on
- --power_t arg (=0)
t power value
- --predictto arg
host to send predictions to
- -l [ --learning_rate ] arg (=0.100000001)
Set Learning Rate
- --passes arg (=1)
Number of Training Passes
- -p [ --predictions ] arg
File to output predictions to
- -q [ --quadratic ] arg
Create and use quadratic features
- --quiet
Don't output diagnostics
- -r [ --raw_predictions ] arg
File to output unnormalized predictions to
- --sendto arg
send example to <hosts>
- -t [ --testonly ]
Ignore label information and just test
- --thread_bits arg (=0)
log_2 threads
- --loss_function arg (=squared)
Specify the loss function to be used, uses squared by default. Currently available ones are squared, hinge, logistic and quantile.
- --quantile_tau arg (=0.5)
Parameter \tau associated with Quantile loss. Defaults to 0.5
- --unique_id arg (=0)
unique id used for cluster parallel
- --compressed
use gzip format whenever appropriate. If a cache file is being created, this option creates a compressed cache file. A mixture of raw-text & compressed inputs are supported if this option is on
- --sort_features
turn this on to disregard order in which features have been defined. This will lead to smaller cache sizes
- --ngram arg
Generate N grams
- --skip_gram arg
Generate skip grams. This in conjunction with the ngram tag can be used to generate generalized n-skip-k-gram.