PMAPI(3)
NAME
PMAPI - introduction to the Performance Metrics Application Programming
Interface
C SYNOPSIS
- #include <pcp/pmapi.h>
- ... assorted routines ...
- cc ... -lpcp
DESCRIPTION
Within the framework of the Performance Co-Pilot (PCP), client applications are developed using the Performance Metrics Application Programming Interface (PMAPI) that defines a procedural interface with services suited to the development of applications with a particular
interest in performance metrics.
This description presents an overview of the PMAPI and the context in
which PMAPI applications are run. The PMAPI is more fully described in
the Performance Co-Pilot Programmer's Guide, and the manual pages for
the individual PMAPI routines.
PERFORMANCE METRICS - NAMES AND IDENTIFIERS
For a description of the Performance Metrics Name Space (PMNS) and
associated terms and concepts, see PCPIntro(1).
Not all PMIDs need be represented in the PMNS of every application.
For example, an application which monitors disk traffic will likely use
a name space which references only the PMIDs for I/O statistics.
Applications which use the PMAPI may have independent versions of a
PMNS, constructed from an initialization file when the application
starts; see pmLoadASCIINameSpace(3), pmLoadNameSpace(3), pmnscomp(1)
and pmns(4).
Internally (below the PMAPI) the implementation of the Performance Metrics Collection System (PMCS) uses only the PMIDs, and a PMNS provides an external mapping from a hierarchic taxonomy of names to PMIDs that is convenient in the context of a particular system or particular use of the PMAPI. For the applications programmer, the routines pmLookupName(3) and pmNameID(3) translate between names in a PMNS and PMIDs, and vice versa. The PMNS may be traversed using pmGetChildren(3).
PMAPI CONTEXT
An application using the PMAPI may manipulate several concurrent contexts, each associated with a source of performance metrics, e.g.
pmcd(1) on some host, or an archive log of performance metrics as created by pmlogger(1).
Contexts are identified by a ``handle'', a small integer value that is returned when the context is created; see pmNewContext(3) and pmDupContext(3). Some PMAPI functions require an explicit ``handle'' to identify the correct context, but more commonly the PMAPI function is executed in the ``current'' context. The current context may be discovered using pmWhichContext(3) and changed using pmUseContext(3).
If a PMAPI context has not been explicitly established (or the previous
current context has been closed using pmDestroyContext(3)) then the
current PMAPI context is undefined.
In addition to the source of the performance metrics, the context also
includes the instance profile and collection time (both described
below) which controls how much information is returned, and when the
information was collected.
INSTANCE DOMAINS
When performance metric values are returned across the PMAPI to a
requesting application, there may be more than one value for a particular metric. Multiple values, or instances, for a single metric are
typically the result of instrumentation being implemented for each
instance of a set of similar components or services in a system, e.g.
independent counts for each CPU, or each process, or each disk, or each
system call type, etc. This multiplicity of values is not enumerated
in the name space but rather, when performance metrics are delivered
across the PMAPI by pmFetch(3), the format of the result accommodates
values for one or more instances, with an instance-value pair encoding
the metric value for a particular instance.
The instances are identified by an internal identifier assigned by the
agent responsible for instantiating the values for the associated performance metric. Each instance identifier has a corresponding external
instance identifier name (an ASCII string). The routines
pmGetInDom(3), pmLookupInDom(3) and pmNameInDom(3) may be used to enumerate all instance identifiers, and to translate between internal and
external instance identifiers.
All of the instance identifiers for a particular performance metric are
collectively known as an instance domain. Multiple performance metrics
may share the same instance domain.
If only one instance is ever available for a particular performance
metric, the instance identifier in the result from pmFetch(3) assumes
the special value PM_IN_NULL and may be ignored by the application, and
only one instance-value pair appears in the result for that metric.
Under these circumstances, the associated instance domain (as returned
via pmLookupDesc(3)) is set to PM_INDOM_NULL to indicate that values
for this metric are singular.
The difficult issue of transient performance metrics (e.g. per-filesystem information, hot-plug replaceable hardware modules, etc.) means
that repeated requests for the same PMID may return different numbers
of values, and/or some changes in the particular instance identifiers
returned. This means applications need to be aware that metric instantiation is guaranteed to be valid at the time of collection only. Similar rules apply to the transient semantics of the associated metric
values. In general however, it is expected that the bulk of the performance metrics will have instantiation semantics that are fixed over
the execution life-time of any PMAPI client.
THE TYPE OF METRIC VALUES
The PMAPI supports a wide range of format and type encodings for the
values of performance metrics, namely signed and unsigned integers,
floating point numbers, 32-bit and 64-bit encodings of all of the
above, ASCII strings (C-style, NULL byte terminated), and arbitrary
aggregates of binary data.
The type field in the pmDesc structure returned by pmLookupDesc(3)
identifies the format and type of the values for a particular performance metric within a particular PMAPI context.
Note that the encoding of values for a particular performance metric
may be different for different PMAPI contexts, due to differences in
the underlying implementation for different contexts. However it is
expected that the vast majority of performance metrics will have consistent value encoding across all versions of all implementations, and
hence across all PMAPI contexts.
The PMAPI supports routines to automate the handling of the various
value formats and types, particularly for the common case where conversion to a canonical format is desired, see pmExtractValue(3) and
pmPrintValue(3).
THE DIMENSIONALITY AND SCALE OF METRIC VALUES
Independent of how the value is encoded, the value for a performance
metric is assumed to be drawn from a set of values that can be
described in terms of their dimensionality and scale by a compact
encoding as follows. The dimensionality is defined by a power, or
index, in each of 3 orthogonal dimensions, namely Space, Time and Count
(or Events, which are dimensionless). For example I/O throughput might
be represented as Space/Time, while the running total of system calls
is Count, memory allocation is Space and average service time is
Time/Count. In each dimension there are a number of common scale values that may be used to better encode ranges that might otherwise
exhaust the precision of a 32-bit value. This information is encoded
in the pmUnits structure which is embedded in the pmDesc structure
returned from pmLookupDesc(3).
The routine pmConvScale(3) is provided to convert values in conjunction
with the pmUnits structures that defines the dimensionality and scale
of the values for a particular performance metric as returned from
pmFetch(3), and the desired dimensionality and scale of the value the
PMAPI client wishes to manipulate.
INSTANCE PROFILE
The set of instances for performance metrics returned from a pmFetch(3)
call may be filtered or restricted using an instance profile. There is
one instance profile for each PMAPI context the application creates,
and each instance profile may include instances from one or more
instance domains.
The routines pmAddProfile(3) and pmDelProfile(3) may be used to dynamically adjust the instance profile.
COLLECTION TIME
For each set of values for performance metrics returned via pmFetch(3)
there is an associated ``timestamp'' that serves to identify when the
performance metric values were collected; for metrics being delivered
from a real-time source (i.e. pmcd(1) on some host) this would typically be not long before they were exported across the PMAPI, and for
metrics being delivered from an archive log, this would be the time
when the metrics were written into the archive log.
There is an issue here of exactly when individual metrics may have been
collected, especially given their origin in potentially different Performance Metric Domains, and variability in the metric updating frequency at the lowest level of the Performance Metric Domain. The PMCS
opts for the pragmatic approach, in which the PMAPI implementation
undertakes to return all of the metrics with values accurate as of the
timestamp, to the best of our ability. The belief is that the inaccuracy this introduces is small, and the additional burden of accurate
individual timestamping for each returned metric value is neither warranted nor practical (from an implementation viewpoint).
Of course, in the case of collection of metrics from multiple hosts the
PMAPI client must assume the sanity of the timestamps is constrained by
the extent to which clock synchronization protocols are implemented
across the network.
A PMAPI application may call pmSetMode(3) to vary the requested collection time, e.g. to rescan performance metrics values from the recent
past, or to ``fast-forward'' through an archive log.
GENERAL ISSUES OF PMAPI PROGRAMMING STYLE
Across the PMAPI, all arguments and results involving a ``list of something'' are declared to be arrays with an associated argument or function value to identify the number of elements in the list. This has
been done to avoid both the varargs(3) approach and sentinel-terminated
lists.
Where the size of a result is known at the time of a call, it is the
caller's responsibility to allocate (and possibly free) the storage,
and the called function will assume the result argument is of an appropriate size. Where a result is of variable size and that size cannot
be known in advance (e.g. for pmGetChildren(3), pmGetInDom(3),
pmNameInDom(3), pmNameID(3), pmLookupText(3) and pmFetch(3)) the PMAPI
implementation uses a range of dynamic allocation schemes in the called
routine, with the caller responsible for subsequently releasing the
storage when no longer required. In some cases this simply involves
calls to free(3C), but in others (most notably for the result from
pmFetch(3)), special routines (e.g. pmFreeResult(3)) should be used to
release the storage.
As a general rule, if the called routine returns an error status then
no allocation will have been done, and any pointer to a variable sized
result is undefined.
DIAGNOSTICS
Where error conditions may arise, the functions that comprise the PMAPI
conform to a single, simple error notification scheme, as follows;
+ the function returns an integer
- + values >= 0 indicate no error, and perhaps some positive status,
- e.g. the number of things really processed
- + values < 0 indicate an error, with a global table of error condi
- tions and error messages
- The PMAPI routine pmErrStr(3) translates error conditions into error messages. By convention, the small negative values are assumed to be negated versions of the Unix error codes as defined in <errno.h> and the strings returned are as per strerror(3C). The larger, negative error codes are PMAPI error conditions.
- One error, common to all PMAPI routines that interact with pmcd(1) on some host is PM_ERR_IPC, which indicates the communication link to pmcd(1) has been lost.
PCP ENVIRONMENT
Most environment variables are described in PCPIntro(1). In addition, environment variables with the prefix PCP_ are used to parameterize the file and directory names used by PCP. On each installation, the file /etc/pcp.conf contains the local values for these variables. The $PCP_CONF variable may be used to specify an alternative configuration file, as described in pcp.conf(4). Values for these variables may be obtained programatically using the pmGetConfig(3) function.