cgbsv(3)

NAME

CGBSV - compute the solution to a complex system of linear
equations A * X = B, where A is a band matrix of order N with KL
subdiagonals and KU superdiagonals, and X and B are N-by-NRHS ma
trices

SYNOPSIS

SUBROUTINE CGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB,
INFO )
    INTEGER       INFO, KL, KU, LDAB, LDB, N, NRHS
    INTEGER       IPIV( * )
    COMPLEX       AB( LDAB, * ), B( LDB, * )

PURPOSE

CGBSV computes the solution to a complex system of linear
equations A * X = B, where A is a band matrix of order N with KL
subdiagonals and KU superdiagonals, and X and B are N-by-NRHS ma
trices. The LU decomposition with partial pivoting and row in
terchanges is used to factor A as A = L * U, where L is a product
of permutation and unit lower triangular matrices with KL subdi
agonals, and U is upper triangular with KL+KU superdiagonals.
The factored form of A is then used to solve the system of equa
tions A * X = B.

ARGUMENTS

N (input) INTEGER
The number of linear equations, i.e., the order of
the matrix A. N >= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A.
KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A.
KU >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number
of columns of the matrix B. NRHS >= 0.
AB (input/output) COMPLEX array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows
KL+1 to 2*KL+KU+1; rows 1 to KL of the array need not be set.
The j-th column of A is stored in the j-th column of the array AB
as follows: AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j
KU)<=i<=min(N,j+KL) On exit, details of the factorization: U is
stored as an upper triangular band matrix with KL+KU superdiago
nals in rows 1 to KL+KU+1, and the multipliers used during the
factorization are stored in rows KL+KU+2 to 2*KL+KU+1. See below
for further details.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >=
2*KL+KU+1.
IPIV (output) INTEGER array, dimension (N)
The pivot indices that define the permutation ma
trix P; row i of the matrix was interchanged with row IPIV(i).
B (input/output) COMPLEX array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >=
max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille
gal value
> 0: if INFO = i, U(i,i) is exactly zero. The
factorization has been completed, but the factor U is exactly
singular, and the solution has not been computed.

FURTHER DETAILS

The band storage scheme is illustrated by the following
example, when M = N = 6, KL = 2, KU = 1:
On entry: On exit:

* * * + + + * * * u14
u25 u36
* * + + + + * * u13 u24
u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34
u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44
u55 u66
a21 a32 a43 a54 a65 * m21 m32 m43 m54
m65 *
a31 a42 a53 a64 * * m31 m42 m53 m64 *
*
Array elements marked * are not used by the routine; ele
ments marked + need not be set on entry, but are required by the
routine to store elements of U because of fill-in resulting from
the row interchanges.
LAPACK version 3.0 15 June 2000
Copyright © 2010-2025 Platon Technologies, s.r.o.           Home | Man pages | tLDP | Documents | Utilities | About
Design by styleshout