cggsvp(3)
NAME
- CGGSVP - compute unitary matrices U, V and Q such that N
- K-L K L U'*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0
SYNOPSIS
SUBROUTINE CGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B,
LDB, TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK, TAU,
WORK, INFO )
CHARACTER JOBQ, JOBU, JOBV
INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M,
N, P
REAL TOLA, TOLB
INTEGER IWORK( * )
REAL RWORK( * )
COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
PURPOSE
- CGGSVP computes unitary matrices U, V and Q such that N-K
- L K L U'*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; L ( 0
- 0 A23 )
- M-K-L ( 0 0 0 )
N-K-L K L
- = K ( 0 A12 A13 ) if M-K-L < 0;
M-K ( 0 0 A23 )
N-K-L K L
V'*B*Q = L ( 0 0 B13 )
P-L ( 0 0 0 )
- where the K-by-K matrix A12 and L-by-L matrix B13 are non
- singular upper triangular; A23 is L-by-L upper triangular if M-K
- L >= 0, otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the
- effective numerical rank of the (M+P)-by-N matrix (A',B')'. Z'
- denotes the conjugate transpose of Z.
- This decomposition is the preprocessing step for computing
- the Generalized Singular Value Decomposition (GSVD), see subrou
- tine CGGSVD.
ARGUMENTS
- JOBU (input) CHARACTER*1
- = 'U': Unitary matrix U is computed;
= 'N': U is not computed.
- JOBV (input) CHARACTER*1
- = 'V': Unitary matrix V is computed;
= 'N': V is not computed.
- JOBQ (input) CHARACTER*1
- = 'Q': Unitary matrix Q is computed;
= 'N': Q is not computed.
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
- P (input) INTEGER
- The number of rows of the matrix B. P >= 0.
- N (input) INTEGER
- The number of columns of the matrices A and B. N
- >= 0.
- A (input/output) COMPLEX array, dimension (LDA,N)
- On entry, the M-by-N matrix A. On exit, A con
- tains the triangular (or trapezoidal) matrix described in the
- Purpose section.
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >=
- max(1,M).
- B (input/output) COMPLEX array, dimension (LDB,N)
- On entry, the P-by-N matrix B. On exit, B con
- tains the triangular matrix described in the Purpose section.
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >=
- max(1,P).
- TOLA (input) REAL
- TOLB (input) REAL TOLA and TOLB are the thresh
- olds to determine the effective numerical rank of matrix B and a
- subblock of A. Generally, they are set to TOLA =
- MAX(M,N)*norm(A)*MACHEPS, TOLB = MAX(P,N)*norm(B)*MACHEPS. The
- size of TOLA and TOLB may affect the size of backward errors of
- the decomposition.
- K (output) INTEGER
- L (output) INTEGER On exit, K and L specify
- the dimension of the subblocks described in Purpose section. K +
- L = effective numerical rank of (A',B')'.
- U (output) COMPLEX array, dimension (LDU,M)
- If JOBU = 'U', U contains the unitary matrix U.
- If JOBU = 'N', U is not referenced.
- LDU (input) INTEGER
- The leading dimension of the array U. LDU >=
- max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.
- V (output) COMPLEX array, dimension (LDV,M)
- If JOBV = 'V', V contains the unitary matrix V.
- If JOBV = 'N', V is not referenced.
- LDV (input) INTEGER
- The leading dimension of the array V. LDV >=
- max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.
- Q (output) COMPLEX array, dimension (LDQ,N)
- If JOBQ = 'Q', Q contains the unitary matrix Q.
- If JOBQ = 'N', Q is not referenced.
- LDQ (input) INTEGER
- The leading dimension of the array Q. LDQ >=
- max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.
- IWORK (workspace) INTEGER array, dimension (N)
- RWORK (workspace) REAL array, dimension (2*N)
- TAU (workspace) COMPLEX array, dimension (N)
- WORK (workspace) COMPLEX array, dimension
- (max(3*N,M,P))
- INFO (output) INTEGER
- = 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille
- gal value.
FURTHER DETAILS
- The subroutine uses LAPACK subroutine CGEQPF for the QR
- factorization with column pivoting to detect the effective numer
- ical rank of the a matrix. It may be replaced by a better rank
- determination strategy.
- LAPACK version 3.0 15 June 2000