chegs2(3)

NAME

CHEGS2 - reduce a complex Hermitian-definite generalized
eigenproblem to standard form

SYNOPSIS

SUBROUTINE CHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
    CHARACTER      UPLO
    INTEGER        INFO, ITYPE, LDA, LDB, N
    COMPLEX        A( LDA, * ), B( LDB, * )

PURPOSE

CHEGS2 reduces a complex Hermitian-definite generalized
eigenproblem to standard form. If ITYPE = 1, the problem is A*x
= lambda*B*x,
and A is overwritten by inv(U')*A*inv(U) or
inv(L)*A*inv(L')
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U` or
L'*A*L.
B must have been previously factorized as U'*U or L*L' by
CPOTRF.

ARGUMENTS

ITYPE (input) INTEGER
= 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L');
= 2 or 3: compute U*A*U' or L'*A*L.
UPLO (input) CHARACTER
Specifies whether the upper or lower triangular
part of the Hermitian matrix A is stored, and how B has been fac
torized. = 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) COMPLEX array, dimension (LDA,N)
On entry, the Hermitian matrix A. If UPLO = 'U',
the leading n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower triangu
lar part of A is not referenced. If UPLO = 'L', the leading n by
n lower triangular part of A contains the lower triangular part
of the matrix A, and the strictly upper triangular part of A is
not referenced.
On exit, if INFO = 0, the transformed matrix,
stored in the same format as A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >=
max(1,N).
B (input) COMPLEX array, dimension (LDB,N)
The triangular factor from the Cholesky factoriza
tion of B, as returned by CPOTRF.
LDB (input) INTEGER
The leading dimension of the array B. LDB >=
max(1,N).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an ille
gal value.
LAPACK version 3.0 15 June 2000
Copyright © 2010-2025 Platon Technologies, s.r.o.           Home | Man pages | tLDP | Documents | Utilities | About
Design by styleshout