clags2(3)

NAME

CLAGS2 - compute 2-by-2 unitary matrices U, V and Q, such
that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0 A3
) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x )
or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2
A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x
) where U = ( CSU SNU ), V = ( CSV SNV ),

SYNOPSIS

SUBROUTINE  CLAGS2(  UPPER,  A1,  A2, A3, B1, B2, B3, CSU,
SNU, CSV, SNV, CSQ, SNQ )
    LOGICAL        UPPER
    REAL           A1, A3, B1, B3, CSQ, CSU, CSV
    COMPLEX        A2, B2, SNQ, SNU, SNV

PURPOSE

CLAGS2 computes 2-by-2 unitary matrices U, V and Q, such
that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0 A3 )
( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or
if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2 A3 )
( 0 x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x )
where U = ( CSU SNU ), V = ( CSV SNV ), ( -CONJG(SNU) CSU
) ( -CONJG(SNV) CSV )

Q = ( CSQ SNQ )
( -CONJG(SNQ) CSQ )
Z' denotes the conjugate transpose of Z.
The rows of the transformed A and B are parallel. More
over, if the input 2-by-2 matrix A is not zero, then the trans
formed (1,1) entry of A is not zero. If the input matrices A and
B are both not zero, then the transformed (2,2) element of B is
not zero, except when the first rows of input A and B are paral
lel and the second rows are zero.

ARGUMENTS

UPPER (input) LOGICAL
= .TRUE.: the input matrices A and B are upper
triangular.
= .FALSE.: the input matrices A and B are lower
triangular.
A1 (input) REAL
A2 (input) COMPLEX A3 (input) REAL On
entry, A1, A2 and A3 are elements of the input 2-by-2 upper (low
er) triangular matrix A.
B1 (input) REAL
B2 (input) COMPLEX B3 (input) REAL On
entry, B1, B2 and B3 are elements of the input 2-by-2 upper (low
er) triangular matrix B.
CSU (output) REAL
SNU (output) COMPLEX The desired unitary ma
trix U.
CSV (output) REAL
SNV (output) COMPLEX The desired unitary ma
trix V.
CSQ (output) REAL
SNQ (output) COMPLEX The desired unitary ma
trix Q.
LAPACK version 3.0 15 June 2000
Copyright © 2010-2025 Platon Technologies, s.r.o.           Home | Man pages | tLDP | Documents | Utilities | About
Design by styleshout