dlags2(3)

NAME

DLAGS2 - compute 2-by-2 orthogonal matrices U, V and Q,
such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) (
0 A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x
x ) or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0 )*Q = ( x x )
( A2 A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 )
( 0 x ) The rows of the transformed A and B are parallel, where
U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) (
-SNV CSV ) ( -SNQ CSQ ) Z' denotes the transpose of Z

SYNOPSIS

SUBROUTINE  DLAGS2(  UPPER,  A1,  A2, A3, B1, B2, B3, CSU,
SNU, CSV, SNV, CSQ, SNQ )
    LOGICAL        UPPER
    DOUBLE         PRECISION A1, A2, A3, B1, B2, B3,  CSQ,
CSU, CSV, SNQ, SNU, SNV

PURPOSE

DLAGS2 computes 2-by-2 orthogonal matrices U, V and Q,
such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0
A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x
) or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2
A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x
) The rows of the transformed A and B are parallel, where U = (
CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV
CSV ) ( -SNQ CSQ ) Z' denotes the transpose of Z.

ARGUMENTS

UPPER (input) LOGICAL
= .TRUE.: the input matrices A and B are upper
triangular.
= .FALSE.: the input matrices A and B are lower
triangular.
A1 (input) DOUBLE PRECISION
A2 (input) DOUBLE PRECISION A3 (input)
DOUBLE PRECISION On entry, A1, A2 and A3 are elements of the in
put 2-by-2 upper (lower) triangular matrix A.
B1 (input) DOUBLE PRECISION
B2 (input) DOUBLE PRECISION B3 (input)
DOUBLE PRECISION On entry, B1, B2 and B3 are elements of the in
put 2-by-2 upper (lower) triangular matrix B.
CSU (output) DOUBLE PRECISION
SNU (output) DOUBLE PRECISION The desired or
thogonal matrix U.
CSV (output) DOUBLE PRECISION
SNV (output) DOUBLE PRECISION The desired or
thogonal matrix V.
CSQ (output) DOUBLE PRECISION
SNQ (output) DOUBLE PRECISION The desired or
thogonal matrix Q.
LAPACK version 3.0 15 June 2000
Copyright © 2010-2025 Platon Technologies, s.r.o.           Home | Man pages | tLDP | Documents | Utilities | About
Design by styleshout