dlanv2(3)

NAME

DLANV2 - compute the Schur factorization of a real 2-by-2
nonsymmetric matrix in standard form

SYNOPSIS

SUBROUTINE DLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS,
SN )
    DOUBLE         PRECISION A, B, C, CS, D,  RT1I,  RT1R,
RT2I, RT2R, SN

PURPOSE

DLANV2 computes the Schur factorization of a real 2-by-2
nonsymmetric matrix in standard form:
[ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ]
[ C D ] [ SN CS ] [ CC DD ] [-SN CS ]
where either
1) CC = 0 so that AA and DD are real eigenvalues of the
matrix, or 2) AA = DD and BB*CC < 0, so that AA + or
sqrt(BB*CC) are complex conjugate eigenvalues.

ARGUMENTS

A (input/output) DOUBLE PRECISION
B (input/output) DOUBLE PRECISION C
(input/output) DOUBLE PRECISION D (input/output) DOUBLE
PRECISION On entry, the elements of the input matrix. On exit,
they are overwritten by the elements of the standardised Schur
form.
RT1R (output) DOUBLE PRECISION
RT1I (output) DOUBLE PRECISION RT2R (output)
DOUBLE PRECISION RT2I (output) DOUBLE PRECISION The real and
imaginary parts of the eigenvalues. If the eigenvalues are a com
plex conjugate pair, RT1I > 0.
CS (output) DOUBLE PRECISION
SN (output) DOUBLE PRECISION Parameters of
the rotation matrix.

FURTHER DETAILS

Modified by V. Sima, Research Institute for Informatics,
Bucharest, Romania, to reduce the risk of cancellation errors,
when computing real eigenvalues, and to ensure, if possi
ble, that abs(RT1R) >= abs(RT2R).
LAPACK version 3.0 15 June 2000
Copyright © 2010-2025 Platon Technologies, s.r.o.           Home | Man pages | tLDP | Documents | Utilities | About
Design by styleshout