dlanv2(3)
NAME
- DLANV2 - compute the Schur factorization of a real 2-by-2
- nonsymmetric matrix in standard form
SYNOPSIS
SUBROUTINE DLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS,
SN )
DOUBLE PRECISION A, B, C, CS, D, RT1I, RT1R,
RT2I, RT2R, SN
PURPOSE
- DLANV2 computes the Schur factorization of a real 2-by-2
- nonsymmetric matrix in standard form:
- [ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ]
[ C D ] [ SN CS ] [ CC DD ] [-SN CS ]
- where either
1) CC = 0 so that AA and DD are real eigenvalues of the
- matrix, or 2) AA = DD and BB*CC < 0, so that AA + or
- sqrt(BB*CC) are complex conjugate eigenvalues.
ARGUMENTS
- A (input/output) DOUBLE PRECISION
- B (input/output) DOUBLE PRECISION C
- (input/output) DOUBLE PRECISION D (input/output) DOUBLE
- PRECISION On entry, the elements of the input matrix. On exit,
- they are overwritten by the elements of the standardised Schur
- form.
- RT1R (output) DOUBLE PRECISION
- RT1I (output) DOUBLE PRECISION RT2R (output)
- DOUBLE PRECISION RT2I (output) DOUBLE PRECISION The real and
- imaginary parts of the eigenvalues. If the eigenvalues are a com
- plex conjugate pair, RT1I > 0.
- CS (output) DOUBLE PRECISION
- SN (output) DOUBLE PRECISION Parameters of
- the rotation matrix.
FURTHER DETAILS
- Modified by V. Sima, Research Institute for Informatics,
- Bucharest, Romania, to reduce the risk of cancellation errors,
when computing real eigenvalues, and to ensure, if possi
- ble, that abs(RT1R) >= abs(RT2R).
- LAPACK version 3.0 15 June 2000