dlarz(3)
NAME
- DLARZ - applie a real elementary reflector H to a real M
- by-N matrix C, from either the left or the right
SYNOPSIS
SUBROUTINE DLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC,
WORK )
CHARACTER SIDE
INTEGER INCV, L, LDC, M, N
DOUBLE PRECISION TAU
DOUBLE PRECISION C( LDC, * ), V( * ), WORK( * )
PURPOSE
- DLARZ applies a real elementary reflector H to a real M
- by-N matrix C, from either the left or the right. H is represent
- ed in the form
H = I - tau * v * v'
- where tau is a real scalar and v is a real vector.
- If tau = 0, then H is taken to be the unit matrix.
- H is a product of k elementary reflectors as returned by
- DTZRZF.
ARGUMENTS
- SIDE (input) CHARACTER*1
- = 'L': form H * C
= 'R': form C * H
- M (input) INTEGER
- The number of rows of the matrix C.
- N (input) INTEGER
- The number of columns of the matrix C.
- L (input) INTEGER
- The number of entries of the vector V containing
- the meaningful part of the Householder vectors. If SIDE = 'L', M
- >= L >= 0, if SIDE = 'R', N >= L >= 0.
- V (input) DOUBLE PRECISION array, dimension
- (1+(L-1)*abs(INCV))
- The vector v in the representation of H as re
- turned by DTZRZF. V is not used if TAU = 0.
- INCV (input) INTEGER
- The increment between elements of v. INCV <> 0.
- TAU (input) DOUBLE PRECISION
- The value tau in the representation of H.
- C (input/output) DOUBLE PRECISION array, dimension
- (LDC,N)
- On entry, the M-by-N matrix C. On exit, C is
- overwritten by the matrix H * C if SIDE = 'L', or C * H if SIDE =
- 'R'.
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >=
- max(1,M).
- WORK (workspace) DOUBLE PRECISION array, dimension
- (N) if SIDE = 'L' or (M) if SIDE = 'R'
FURTHER DETAILS
- Based on contributions by
- A. Petitet, Computer Science Dept., Univ. of Tenn.,
- Knoxville, USA
- LAPACK version 3.0 15 June 2000