dlasda(3)

NAME

DLASDA - a divide and conquer approach, DLASDA computes
the singular value decomposition (SVD) of a real upper bidiagonal
N-by-M matrix B with diagonal D and offdiagonal E, where M = N +
SQRE

SYNOPSIS

SUBROUTINE  DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU,
VT, K, DIFL,  DIFR,  Z,  POLES,  GIVPTR,  GIVCOL,  LDGCOL,  PERM,
GIVNUM, C, S, WORK, IWORK, INFO )
    INTEGER         ICOMPQ,  INFO, LDGCOL, LDU, N, SMLSIZ,
SQRE
    INTEGER        GIVCOL(  LDGCOL,  *  ),  GIVPTR(  *  ),
IWORK( * ), K( * ), PERM( LDGCOL, * )
    DOUBLE          PRECISION C( * ), D( * ), DIFL( LDU, *
), DIFR( LDU, * ), E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),  S(
* ), U( LDU, * ), VT( LDU, * ), WORK( * ), Z( LDU, * )

PURPOSE

Using a divide and conquer approach, DLASDA computes the
singular value decomposition (SVD) of a real upper bidiagonal N
by-M matrix B with diagonal D and offdiagonal E, where M = N +
SQRE. The algorithm computes the singular values in the SVD B = U
* S * VT. The orthogonal matrices U and VT are optionally com
puted in compact form.
A related subroutine, DLASD0, computes the singular values
and the singular vectors in explicit form.

ARGUMENTS

ICOMPQ (input) INTEGER Specifies whether singular vectors
are to be computed in compact form, as follows = 0: Compute sin
gular values only.
= 1: Compute singular vectors of upper bidiagonal matrix
in compact form.
SMLSIZ (input) INTEGER The maximum size of the subproblems
at the bottom of the computation tree.
N (input) INTEGER
The row dimension of the upper bidiagonal matrix.
This is also the dimension of the main diagonal array D.
SQRE (input) INTEGER
Specifies the column dimension of the bidiagonal
matrix. = 0: The bidiagonal matrix has column dimension M = N;
= 1: The bidiagonal matrix has column dimension M =
N + 1.
D (input/output) DOUBLE PRECISION array, dimension (
N )
On entry D contains the main diagonal of the bidi
agonal matrix. On exit D, if INFO = 0, contains its singular val
ues.
E (input) DOUBLE PRECISION array, dimension ( M-1 )
Contains the subdiagonal entries of the bidiagonal
matrix. On exit, E has been destroyed.
U (output) DOUBLE PRECISION array,
dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not
referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the
left singular vector matrices of all subproblems at the bottom
level.
LDU (input) INTEGER, LDU = > N.
The leading dimension of arrays U, VT, DIFL, DIFR,
POLES, GIVNUM, and Z.
VT (output) DOUBLE PRECISION array,
dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not
referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains
the right singular vector matrices of all subproblems at the bot
tom level.
K (output) INTEGER array,
dimension ( N ) if ICOMPQ = 1 and dimension 1 if
ICOMPQ = 0. If ICOMPQ = 1, on exit, K(I) is the dimension of the
I-th secular equation on the computation tree.
DIFL (output) DOUBLE PRECISION array, dimension ( LDU,
NLVL ),
where NLVL = floor(log_2 (N/SMLSIZ))).
DIFR (output) DOUBLE PRECISION array,
dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and di
mension ( N ) if ICOMPQ = 0. If ICOMPQ = 1, on exit, DIFL(1:N,
I) and DIFR(1:N, 2 * I - 1) record distances between singular
values on the I-th level and singular values on the (I -1)-th
level, and DIFR(1:N, 2 * I ) contains the normalizing factors for
the right singular vector matrix. See DLASD8 for details.
Z (output) DOUBLE PRECISION array,
dimension ( LDU, NLVL ) if ICOMPQ = 1 and dimension
( N ) if ICOMPQ = 0. The first K elements of Z(1, I) contain the
components of the deflation-adjusted updating row vector for sub
problems on the I-th level.
POLES (output) DOUBLE PRECISION array,
dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not
referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I
1) and POLES(1, 2*I) contain the new and old singular values in
volved in the secular equations on the I-th level.
GIVPTR (output) INTEGER array, dimension ( N ) if
ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on
exit, GIVPTR( I ) records the number of Givens rotations per
formed on the I-th problem on the computation tree.
GIVCOL (output) INTEGER array, dimension ( LDGCOL,
2 * NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If
ICOMPQ = 1, on exit, for each I, GIVCOL(1, 2 *I - 1) and GIV
COL(1, 2 *I) record the locations of Givens rotations performed
on the I-th level on the computation tree.
LDGCOL (input) INTEGER, LDGCOL = > N. The leading
dimension of arrays GIVCOL and PERM.
PERM (output) INTEGER array,
dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not
referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I)
records permutations done on the I-th level of the computation
tree.
GIVNUM (output) DOUBLE PRECISION array, dimension (
LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0.
If ICOMPQ = 1, on exit, for each I, GIVNUM(1, 2 *I - 1) and
GIVNUM(1, 2 *I) record the C- and S- values of Givens rotations
performed on the I-th level on the computation tree.
C (output) DOUBLE PRECISION array,
dimension ( N ) if ICOMPQ = 1, and dimension 1 if
ICOMPQ = 0. If ICOMPQ = 1 and the I-th subproblem is not square,
on exit, C( I ) contains the C-value of a Givens rotation related
to the right null space of the I-th subproblem.
S (output) DOUBLE PRECISION array, dimension ( N ) if
ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOM
PQ = 1 and the I-th subproblem is not square, on exit, S( I )
contains the S-value of a Givens rotation related to the right
null space of the I-th subproblem.
WORK (workspace) DOUBLE PRECISION array, dimension
(6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
IWORK (workspace) INTEGER array.
Dimension must be at least (7 * N).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an ille
gal value.
> 0: if INFO = 1, an singular value did not con
verge

FURTHER DETAILS

Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, Uni
versity of
California at Berkeley, USA
LAPACK version 3.0 15 June 2000
Copyright © 2010-2025 Platon Technologies, s.r.o.           Home | Man pages | tLDP | Documents | Utilities | About
Design by styleshout