dptrfs(3)

NAME

DPTRFS - improve the computed solution to a system of lin
ear equations when the coefficient matrix is symmetric positive
definite and tridiagonal, and provides error bounds and backward
error estimates for the solution

SYNOPSIS

SUBROUTINE  DPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
FERR, BERR, WORK, INFO )
    INTEGER        INFO, LDB, LDX, N, NRHS
    DOUBLE         PRECISION B( LDB, * ), BERR( * ), D(  *
), DF( * ), E( * ), EF( * ), FERR( * ), WORK( * ), X( LDX, * )

PURPOSE

DPTRFS improves the computed solution to a system of lin
ear equations when the coefficient matrix is symmetric positive
definite and tridiagonal, and provides error bounds and backward
error estimates for the solution.

ARGUMENTS

N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number
of columns of the matrix B. NRHS >= 0.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix
A.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal
matrix A.
DF (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D
from the factorization computed by DPTTRF.
EF (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiag
onal factor L from the factorization computed by DPTTRF.
B (input) DOUBLE PRECISION array, dimension
(LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >=
max(1,N).
X (input/output) DOUBLE PRECISION array, dimension
(LDX,NRHS)
On entry, the solution matrix X, as computed by
DPTTRS. On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >=
max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X). If XTRUE is the
true solution corresponding to X(j), FERR(j) is an estimated up
per bound for the magnitude of the largest element in (X(j)
XTRUE) divided by the magnitude of the largest element in X(j).
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each
solution vector X(j) (i.e., the smallest relative change in any
element of A or B that makes X(j) an exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension
(2*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille
gal value

PARAMETERS

ITMAX is the maximum number of steps of iterative refine
ment.
LAPACK version 3.0 15 June 2000
Copyright © 2010-2025 Platon Technologies, s.r.o.           Home | Man pages | tLDP | Documents | Utilities | About
Design by styleshout