dptrfs(3)
NAME
- DPTRFS - improve the computed solution to a system of lin
- ear equations when the coefficient matrix is symmetric positive
- definite and tridiagonal, and provides error bounds and backward
- error estimates for the solution
SYNOPSIS
SUBROUTINE DPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
FERR, BERR, WORK, INFO )
INTEGER INFO, LDB, LDX, N, NRHS
DOUBLE PRECISION B( LDB, * ), BERR( * ), D( *
), DF( * ), E( * ), EF( * ), FERR( * ), WORK( * ), X( LDX, * )
PURPOSE
- DPTRFS improves the computed solution to a system of lin
- ear equations when the coefficient matrix is symmetric positive
- definite and tridiagonal, and provides error bounds and backward
- error estimates for the solution.
ARGUMENTS
- N (input) INTEGER
- The order of the matrix A. N >= 0.
- NRHS (input) INTEGER
- The number of right hand sides, i.e., the number
- of columns of the matrix B. NRHS >= 0.
- D (input) DOUBLE PRECISION array, dimension (N)
- The n diagonal elements of the tridiagonal matrix
- A.
- E (input) DOUBLE PRECISION array, dimension (N-1)
- The (n-1) subdiagonal elements of the tridiagonal
- matrix A.
- DF (input) DOUBLE PRECISION array, dimension (N)
- The n diagonal elements of the diagonal matrix D
- from the factorization computed by DPTTRF.
- EF (input) DOUBLE PRECISION array, dimension (N-1)
- The (n-1) subdiagonal elements of the unit bidiag
- onal factor L from the factorization computed by DPTTRF.
- B (input) DOUBLE PRECISION array, dimension
- (LDB,NRHS)
- The right hand side matrix B.
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >=
- max(1,N).
- X (input/output) DOUBLE PRECISION array, dimension
- (LDX,NRHS)
- On entry, the solution matrix X, as computed by
- DPTTRS. On exit, the improved solution matrix X.
- LDX (input) INTEGER
- The leading dimension of the array X. LDX >=
- max(1,N).
- FERR (output) DOUBLE PRECISION array, dimension (NRHS)
- The forward error bound for each solution vector
- X(j) (the j-th column of the solution matrix X). If XTRUE is the
- true solution corresponding to X(j), FERR(j) is an estimated up
- per bound for the magnitude of the largest element in (X(j)
- XTRUE) divided by the magnitude of the largest element in X(j).
- BERR (output) DOUBLE PRECISION array, dimension (NRHS)
- The componentwise relative backward error of each
- solution vector X(j) (i.e., the smallest relative change in any
- element of A or B that makes X(j) an exact solution).
- WORK (workspace) DOUBLE PRECISION array, dimension
- (2*N)
- INFO (output) INTEGER
- = 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille
- gal value
PARAMETERS
- ITMAX is the maximum number of steps of iterative refine
- ment.
- LAPACK version 3.0 15 June 2000