dtrti2(3)
NAME
- DTRTI2 - compute the inverse of a real upper or lower tri
- angular matrix
SYNOPSIS
SUBROUTINE DTRTI2( UPLO, DIAG, N, A, LDA, INFO )
CHARACTER DIAG, UPLO
INTEGER INFO, LDA, N
DOUBLE PRECISION A( LDA, * )
PURPOSE
- DTRTI2 computes the inverse of a real upper or lower tri
- angular matrix. This is the Level 2 BLAS version of the algo
- rithm.
ARGUMENTS
- UPLO (input) CHARACTER*1
- Specifies whether the matrix A is upper or lower
- triangular. = 'U': Upper triangular
= 'L': Lower triangular
- DIAG (input) CHARACTER*1
- Specifies whether or not the matrix A is unit tri
- angular. = 'N': Non-unit triangular
= 'U': Unit triangular
- N (input) INTEGER
- The order of the matrix A. N >= 0.
- A (input/output) DOUBLE PRECISION array, dimension
- (LDA,N)
- On entry, the triangular matrix A. If UPLO = 'U',
- the leading n by n upper triangular part of the array A contains
- the upper triangular matrix, and the strictly lower triangular
- part of A is not referenced. If UPLO = 'L', the leading n by n
- lower triangular part of the array A contains the lower triangu
- lar matrix, and the strictly upper triangular part of A is not
- referenced. If DIAG = 'U', the diagonal elements of A are also
- not referenced and are assumed to be 1.
- On exit, the (triangular) inverse of the original
- matrix, in the same storage format.
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >=
- max(1,N).
- INFO (output) INTEGER
- = 0: successful exit
< 0: if INFO = -k, the k-th argument had an ille
- gal value
- LAPACK version 3.0 15 June 2000