pcpttrf(3)

NAME

PCPTTRF - compute a Cholesky factorization of an N-by-N complex tridiagonal symmetric positive definite distributed matrix A(1:N, JA:JA+N-1)

SYNOPSIS

SUBROUTINE PCPTTRF( N, D, E, JA, DESCA, AF, LAF, WORK, LWORK, INFO )
    INTEGER         INFO, JA, LAF, LWORK, N
    INTEGER         DESCA( * )
    COMPLEX         AF( * ), E( * ), WORK( * )
    REAL            D( * )

PURPOSE

PCPTTRF computes a Cholesky factorization of an N-by-N complex tridiagonal symmetric positive definite distributed matrix A(1:N, JA:JA+N-1). Reordering is used to increase parallelism in the factorization. This reordering results in factors that are DIFFERENT from those produced by equivalent sequential codes. These factors cannot be used directly by users; however, they can be used in
subsequent calls to PCPTTRS to solve linear systems.

The factorization has the form
P A(1:N, JA:JA+N-1) P^T = U' D U or
P A(1:N, JA:JA+N-1) P^T = L D L',
where U is a tridiagonal upper triangular matrix and L is tridiagonal lower triangular, and P is a permutation matrix.
Copyright © 2010-2025 Platon Technologies, s.r.o.           Home | Man pages | tLDP | Documents | Utilities | About
Design by styleshout