pslarfb(3)
NAME
PSLARFB - applie a real block reflector Q or its transpose Q**T to a
real distributed M-by-N matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1)
SYNOPSIS
SUBROUTINE PSLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, IV, JV,
DESCV, T, C, IC, JC, DESCC, WORK )
CHARACTER SIDE, TRANS, DIRECT, STOREV
INTEGER IC, IV, JC, JV, K, M, N
INTEGER DESCC( * ), DESCV( * )
REAL C( * ), T( * ), V( * ), WORK( * )
PURPOSE
PSLARFB applies a real block reflector Q or its transpose Q**T to a
real distributed M-by-N matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) from
the left or the right.
Notes
=====
Each global data object is described by an associated description vector. This vector stores the information required to establish the mapping between an object element and its corresponding process and memory
location.
Let A be a generic term for any 2D block cyclicly distributed array.
Such a global array has an associated description vector DESCA. In the
following comments, the character _ should be read as "of the global
array".
- NOTATION STORED IN EXPLANATION
--------------- -------------- -------------------------------------DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case, - DTYPE_A = 1.
- CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
- the BLACS process grid A is distributed over. The context itself is global, but the handle (the integer
value) may vary. - M_A (global) DESCA( M_ ) The number of rows in the global
- array A.
- N_A (global) DESCA( N_ ) The number of columns in the global
- array A.
- MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
- the rows of the array.
- NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
- the columns of the array.
- RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
- row of the array A is distributed.
- CSRC_A (global) DESCA( CSRC_ ) The process column over which the
- first column of the array A is
distributed. - LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
- array. LLD_A >= MAX(1,LOCr(M_A)).
- Let K be the number of rows or columns of a distributed matrix, and
assume that its process grid has dimension p x q.
LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the p processes of its process column.
Similarly, LOCc( K ) denotes the number of elements of K that a process would receive if K were distributed over the q processes of its process row.
The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC: - LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper - bound for these quantities may be computed by:
- LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
ARGUMENTS
- SIDE (global input) CHARACTER
- = 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right. - TRANS (global input) CHARACTER
- = 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T. - DIRECT (global input) CHARACTER
- Indicates how Q is formed from a product of elementary reflectors = 'F': Q = H(1) H(2) . . . H(k) (Forward)
= 'B': Q = H(k) . . . H(2) H(1) (Backward) - STOREV (global input) CHARACTER
- Indicates how the vectors which define the elementary reflectors are stored:
= 'C': Columnwise
= 'R': Rowwise - M (global input) INTEGER
- The number of rows to be operated on i.e the number of rows of the distributed submatrix sub( C ). M >= 0.
- N (global input) INTEGER
- The number of columns to be operated on i.e the number of columns of the distributed submatrix sub( C ). N >= 0.
- K (global input) INTEGER
- The order of the matrix T (= the number of elementary reflectors whose product defines the block reflector).
- V (local input) REAL pointer into the local memory
- to an array of dimension ( LLD_V, LOCc(JV+K-1) ) if STOREV = 'C', ( LLD_V, LOCc(JV+M-1)) if STOREV = 'R' and SIDE = 'L', ( LLD_V, LOCc(JV+N-1) ) if STOREV = 'R' and SIDE = 'R'. It contains the local pieces of the distributed vectors V representing the Householder transformation. See further details. If STOREV = 'C' and SIDE = 'L', LLD_V >= MAX(1,LOCr(IV+M-1)); if STOREV = 'C' and SIDE = 'R', LLD_V >= MAX(1,LOCr(IV+N-1)); if STOREV = 'R', LLD_V >= LOCr(IV+K-1).
- IV (global input) INTEGER
- The row index in the global array V indicating the first row of sub( V ).
- JV (global input) INTEGER
- The column index in the global array V indicating the first column of sub( V ).
- DESCV (global and local input) INTEGER array of dimension DLEN_.
- The array descriptor for the distributed matrix V.
- T (local input) REAL array, dimension MB_V by MB_V
- if STOREV = 'R' and NB_V by NB_V if STOREV = 'C'. The triangular matrix T in the representation of the block reflector.
- C (local input/local output) REAL pointer into the
- local memory to an array of dimension (LLD_C,LOCc(JC+N-1)). On entry, the M-by-N distributed matrix sub( C ). On exit, sub( C ) is overwritten by Q*sub( C ) or Q'*sub( C ) or sub( C )*Q or sub( C )*Q'.
- IC (global input) INTEGER
- The row index in the global array C indicating the first row of sub( C ).
- JC (global input) INTEGER
- The column index in the global array C indicating the first column of sub( C ).
- DESCC (global and local input) INTEGER array of dimension DLEN_.
- The array descriptor for the distributed matrix C.
- WORK (local workspace) REAL array, dimension (LWORK)
- If STOREV = 'C', if SIDE = 'L', LWORK >= ( NqC0 + MpC0 ) * K else if SIDE = 'R', LWORK >= ( NqC0 + MAX( NpV0 + NUMROC( NUMROC( N+ICOFFC, NB_V, 0, 0, NPCOL ), NB_V, 0, 0, LCMQ ), MpC0 ) ) * K end if else if STOREV = 'R', if SIDE = 'L', LWORK >= ( MpC0 + MAX( MqV0 + NUMROC( NUMROC( M+IROFFC, MB_V, 0, 0, NPROW ), MB_V, 0, 0, LCMP ), NqC0 ) ) * K else if SIDE = 'R', LWORK >= ( MpC0 + NqC0 ) * K end if end if
- where LCMQ = LCM / NPCOL with LCM = ICLM( NPROW, NPCOL ),
- IROFFV = MOD( IV-1, MB_V ), ICOFFV = MOD( JV-1, NB_V ), IVROW = INDXG2P( IV, MB_V, MYROW, RSRC_V, NPROW ), IVCOL = INDXG2P( JV, NB_V, MYCOL, CSRC_V, NPCOL ), MqV0 = NUMROC( M+ICOFFV, NB_V, MYCOL, IVCOL, NPCOL ), NpV0 = NUMROC( N+IROFFV, MB_V, MYROW, IVROW, NPROW ),
- IROFFC = MOD( IC-1, MB_C ), ICOFFC = MOD( JC-1, NB_C ), ICROW = INDXG2P( IC, MB_C, MYROW, RSRC_C, NPROW ), ICCOL = INDXG2P( JC, NB_C, MYCOL, CSRC_C, NPCOL ), MpC0 = NUMROC( M+IROFFC, MB_C, MYROW, ICROW, NPROW ), NpC0 = NUMROC( N+ICOFFC, MB_C, MYROW, ICROW, NPROW ), NqC0 = NUMROC( N+ICOFFC, NB_C, MYCOL, ICCOL, NPCOL ),
- ILCM, INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine BLACS_GRIDINFO.
- Alignment requirements ======================
- The distributed submatrices V(IV:*, JV:*) and C(IC:IC+M-1,JC:JC+N-1) must verify some alignment properties, namely the following expressions should be true:
- If STOREV = 'Columnwise' If SIDE = 'Left', ( MB_V.EQ.MB_C .AND. IROFFV.EQ.IROFFC .AND. IVROW.EQ.ICROW ) If SIDE = 'Right', ( MB_V.EQ.NB_C .AND. IROFFV.EQ.ICOFFC ) else if STOREV = 'Rowwise' If SIDE = 'Left', ( NB_V.EQ.MB_C .AND. ICOFFV.EQ.IROFFC ) If SIDE = 'Right', ( NB_V.EQ.NB_C .AND. ICOFFV.EQ.ICOFFC .AND. IVCOL.EQ.ICCOL ) end if