sggsvd(3)
NAME
- SGGSVD - compute the generalized singular value decomposi
- tion (GSVD) of an M-by-N real matrix A and P-by-N real matrix B
SYNOPSIS
SUBROUTINE SGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A,
LDA, B, LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, IWORK,
INFO )
CHARACTER JOBQ, JOBU, JOBV
INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M,
N, P
INTEGER IWORK( * )
REAL A( LDA, * ), ALPHA( * ), B( LDB, * ),
BETA( * ), Q( LDQ, * ), U( LDU, * ), V( LDV, * ), WORK( * )
PURPOSE
- SGGSVD computes the generalized singular value decomposi
- tion (GSVD) of an M-by-N real matrix A and P-by-N real matrix B:
- U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R )
- where U, V and Q are orthogonal matrices, and Z' is the
- transpose of Z. Let K+L = the effective numerical rank of the
- matrix (A',B')', then R is a K+L-by-K+L nonsingular upper trian
- gular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
- matrices and of the following structures, respectively:
- If M-K-L >= 0,
K L
- D1 = K ( I 0 )
- L ( 0 C )
- M-K-L ( 0 0 )
K L
- D2 = L ( 0 S )
- P-L ( 0 0 )
N-K-L K L
- ( 0 R ) = K ( 0 R11 R12 )
L ( 0 0 R22 )
- where
C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
S = diag( BETA(K+1), ... , BETA(K+L) ),
C**2 + S**2 = I.
- R is stored in A(1:K+L,N-K-L+1:N) on exit.
- If M-K-L < 0,
K M-K K+L-M
- D1 = K ( I 0 0 )
- M-K ( 0 C 0 )
K M-K K+L-M
- D2 = M-K ( 0 S 0 )
K+L-M ( 0 0 I )
P-L ( 0 0 0 )
N-K-L K M-K K+L-M
( 0 R ) = K ( 0 R11 R12 R13 )
M-K ( 0 0 R22 R23 )
K+L-M ( 0 0 0 R33 )
- where
C = diag( ALPHA(K+1), ... , ALPHA(M) ),
S = diag( BETA(K+1), ... , BETA(M) ),
C**2 + S**2 = I.
- (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33
- is stored
( 0 R22 R23 )
in B(M-K+1:L,N+M-K-L+1:N) on exit.
- The routine computes C, S, R, and optionally the orthogo
- nal transformation matrices U, V and Q.
- In particular, if B is an N-by-N nonsingular matrix, then
- the GSVD of A and B implicitly gives the SVD of A*inv(B):
- A*inv(B) = U*(D1*inv(D2))*V'.
- If ( A',B')' has orthonormal columns, then the GSVD of A
- and B is also equal to the CS decomposition of A and B. Further
- more, the GSVD can be used to derive the solution of the eigen
- value problem:
- A'*A x = lambda* B'*B x.
- In some literature, the GSVD of A and B is presented in
- the form
- U'*A*X = ( 0 D1 ), V'*B*X = ( 0 D2 )
- where U and V are orthogonal and X is nonsingular, D1 and
- D2 are ``diagonal''. The former GSVD form can be converted to
- the latter form by taking the nonsingular matrix X as
X = Q*( I 0 )
( 0 inv(R) ).
ARGUMENTS
- JOBU (input) CHARACTER*1
- = 'U': Orthogonal matrix U is computed;
= 'N': U is not computed.
- JOBV (input) CHARACTER*1
- = 'V': Orthogonal matrix V is computed;
= 'N': V is not computed.
- JOBQ (input) CHARACTER*1
- = 'Q': Orthogonal matrix Q is computed;
= 'N': Q is not computed.
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
- N (input) INTEGER
- The number of columns of the matrices A and B. N
- >= 0.
- P (input) INTEGER
- The number of rows of the matrix B. P >= 0.
- K (output) INTEGER
- L (output) INTEGER On exit, K and L specify
- the dimension of the subblocks described in the Purpose section.
- K + L = effective numerical rank of (A',B')'.
- A (input/output) REAL array, dimension (LDA,N)
- On entry, the M-by-N matrix A. On exit, A con
- tains the triangular matrix R, or part of R. See Purpose for de
- tails.
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >=
- max(1,M).
- B (input/output) REAL array, dimension (LDB,N)
- On entry, the P-by-N matrix B. On exit, B con
- tains the triangular matrix R if M-K-L < 0. See Purpose for de
- tails.
- LDB (input) INTEGER
- The leading dimension of the array B. LDA >=
- max(1,P).
- ALPHA (output) REAL array, dimension (N)
- BETA (output) REAL array, dimension (N) On ex
- it, ALPHA and BETA contain the generalized singular value pairs
- of A and B; ALPHA(1:K) = 1,
BETA(1:K) = 0, and if M-K-L >= 0, ALPHA(K+1:K+L)
- = C,
BETA(K+1:K+L) = S, or if M-K-L < 0, AL
- PHA(K+1:M)=C, ALPHA(M+1:K+L)=0
BETA(K+1:M) =S, BETA(M+1:K+L) =1 and AL
- PHA(K+L+1:N) = 0
BETA(K+L+1:N) = 0
- U (output) REAL array, dimension (LDU,M)
- If JOBU = 'U', U contains the M-by-M orthogonal
- matrix U. If JOBU = 'N', U is not referenced.
- LDU (input) INTEGER
- The leading dimension of the array U. LDU >=
- max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.
- V (output) REAL array, dimension (LDV,P)
- If JOBV = 'V', V contains the P-by-P orthogonal
- matrix V. If JOBV = 'N', V is not referenced.
- LDV (input) INTEGER
- The leading dimension of the array V. LDV >=
- max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.
- Q (output) REAL array, dimension (LDQ,N)
- If JOBQ = 'Q', Q contains the N-by-N orthogonal
- matrix Q. If JOBQ = 'N', Q is not referenced.
- LDQ (input) INTEGER
- The leading dimension of the array Q. LDQ >=
- max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.
- WORK (workspace) REAL array,
- dimension (max(3*N,M,P)+N)
- IWORK (workspace/output) INTEGER array, dimension (N)
- On exit, IWORK stores the sorting information.
- More precisely, the following loop will sort ALPHA for I = K+1,
- min(M,K+L) swap ALPHA(I) and ALPHA(IWORK(I)) endfor such that AL
- PHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
- INFO (output)INTEGER
- = 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille
- gal value.
> 0: if INFO = 1, the Jacobi-type procedure
- failed to converge. For further details, see subroutine STGSJA.
PARAMETERS
- TOLA REAL
- TOLB REAL TOLA and TOLB are the thresholds to
- determine the effective rank of (A',B')'. Generally, they are set
- to TOLA = MAX(M,N)*norm(A)*MACHEPS, TOLB =
- MAX(P,N)*norm(B)*MACHEPS. The size of TOLA and TOLB may affect
- the size of backward errors of the decomposition.
- Further Details ===============
- 2-96 Based on modifications by Ming Gu and Huan
- Ren, Computer Science Division, University of California at
- Berkeley, USA
- LAPACK version 3.0 15 June 2000