slaed5(3)

NAME

SLAED5 - subroutine computes the I-th eigenvalue of a sym
metric rank-one modification of a 2-by-2 diagonal matrix diag( D
) + RHO * Z * transpose(Z)

SYNOPSIS

SUBROUTINE SLAED5( I, D, Z, DELTA, RHO, DLAM )
    INTEGER        I
    REAL           DLAM, RHO
    REAL           D( 2 ), DELTA( 2 ), Z( 2 )

PURPOSE

This subroutine computes the I-th eigenvalue of a symmet
ric rank-one modification of a 2-by-2 diagonal matrix diag( D ) +
RHO * Z * transpose(Z) . The diagonal elements in the array D
are assumed to satisfy

D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the
vector Z is one.

ARGUMENTS

I (input) INTEGER
The index of the eigenvalue to be computed. I = 1
or I = 2.
D (input) REAL array, dimension (2)
The original eigenvalues. We assume D(1) < D(2).
Z (input) REAL array, dimension (2)
The components of the updating vector.
DELTA (output) REAL array, dimension (2)
The vector DELTA contains the information necessary
to construct the eigenvectors.
RHO (input) REAL
The scalar in the symmetric updating formula.
DLAM (output) REAL
The computed lambda_I, the I-th updated eigenvalue.

FURTHER DETAILS

Based on contributions by
Ren-Cang Li, Computer Science Division, University of
California
at Berkeley, USA
LAPACK version 3.0 15 June 2000
Copyright © 2010-2025 Platon Technologies, s.r.o.           Home | Man pages | tLDP | Documents | Utilities | About
Design by styleshout