slaic1(3)
NAME
- SLAIC1 - applie one step of incremental condition estima
- tion in its simplest version
SYNOPSIS
SUBROUTINE SLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C
)
INTEGER J, JOB
REAL C, GAMMA, S, SEST, SESTPR
REAL W( J ), X( J )
PURPOSE
- SLAIC1 applies one step of incremental condition estima
- tion in its simplest version: Let x, twonorm(x) = 1, be an ap
- proximate singular vector of an j-by-j lower triangular matrix L,
- such that
- twonorm(L*x) = sest
- Then SLAIC1 computes sestpr, s, c such that
the vector
- [ s*x ]
- xhat = [ c ]
- is an approximate singular vector of
- [ L 0 ]
- Lhat = [ w' gamma ]
- in the sense that
- twonorm(Lhat*xhat) = sestpr.
- Depending on JOB, an estimate for the largest or smallest
- singular value is computed.
- Note that [s c]' and sestpr**2 is an eigenpair of the sys
- tem
diag(sest*sest, 0) + [alpha gamma] * [ alpha ]
[ gamma ]
- where alpha = x'*w.
ARGUMENTS
- JOB (input) INTEGER
- = 1: an estimate for the largest singular value is
- computed.
= 2: an estimate for the smallest singular value
- is computed.
- J (input) INTEGER
- Length of X and W
- X (input) REAL array, dimension (J)
- The j-vector x.
- SEST (input) REAL
- Estimated singular value of j by j matrix L
- W (input) REAL array, dimension (J)
- The j-vector w.
- GAMMA (input) REAL
- The diagonal element gamma.
- SESTPR (output) REAL
- Estimated singular value of (j+1) by (j+1) matrix
- Lhat.
- S (output) REAL
- Sine needed in forming xhat.
- C (output) REAL
- Cosine needed in forming xhat.
- LAPACK version 3.0 15 June 2000