slanv2(3)
NAME
- SLANV2 - compute the Schur factorization of a real 2-by-2
- nonsymmetric matrix in standard form
SYNOPSIS
SUBROUTINE SLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS,
SN )
REAL A, B, C, CS, D, RT1I, RT1R, RT2I, RT2R,
SN
PURPOSE
- SLANV2 computes the Schur factorization of a real 2-by-2
- nonsymmetric matrix in standard form:
- [ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ]
[ C D ] [ SN CS ] [ CC DD ] [-SN CS ]
- where either
1) CC = 0 so that AA and DD are real eigenvalues of the
- matrix, or 2) AA = DD and BB*CC < 0, so that AA + or
- sqrt(BB*CC) are complex conjugate eigenvalues.
ARGUMENTS
- A (input/output) REAL
- B (input/output) REAL C (input/output)
- REAL D (input/output) REAL On entry, the elements of the
- input matrix. On exit, they are overwritten by the elements of
- the standardised Schur form.
- RT1R (output) REAL
- RT1I (output) REAL RT2R (output) REAL RT2I
- (output) REAL The real and imaginary parts of the eigenvalues. If
- the eigenvalues are a complex conjugate pair, RT1I > 0.
- CS (output) REAL
- SN (output) REAL Parameters of the rotation
- matrix.
FURTHER DETAILS
- Modified by V. Sima, Research Institute for Informatics,
- Bucharest, Romania, to reduce the risk of cancellation errors,
when computing real eigenvalues, and to ensure, if possi
- ble, that abs(RT1R) >= abs(RT2R).
- LAPACK version 3.0 15 June 2000