slasd5(3)
NAME
- SLASD5 - subroutine computes the square root of the I-th
- eigenvalue of a positive symmetric rank-one modification of a
- 2-by-2 diagonal matrix diag( D ) * diag( D ) + RHO * Z * trans
- pose(Z)
SYNOPSIS
SUBROUTINE SLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
INTEGER I
REAL DSIGMA, RHO
REAL D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
PURPOSE
- This subroutine computes the square root of the I-th
- eigenvalue of a positive symmetric rank-one modification of a
- 2-by-2 diagonal matrix diag( D ) * diag( D ) + RHO * Z * trans
- pose(Z) . The diagonal entries in the array D are assumed to
- satisfy
0 <= D(i) < D(j) for i < j .
- We also assume RHO > 0 and that the Euclidean norm of the
- vector Z is one.
ARGUMENTS
- I (input) INTEGER
- The index of the eigenvalue to be computed. I = 1
- or I = 2.
- D (input) REAL array, dimension ( 2 )
- The original eigenvalues. We assume 0 <= D(1) <
- D(2).
- Z (input) REAL array, dimension ( 2 )
- The components of the updating vector.
- DELTA (output) REAL array, dimension ( 2 )
- Contains (D(j) - lambda_I) in its j-th component.
- The vector DELTA contains the information necessary to construct
- the eigenvectors.
- RHO (input) REAL
- The scalar in the symmetric updating formula.
- DSIGMA (output) REAL The computed lambda_I, the I
- th updated eigenvalue.
- WORK (workspace) REAL array, dimension ( 2 )
- WORK contains (D(j) + sigma_I) in its j-th compo
- nent.
FURTHER DETAILS
- Based on contributions by
- Ren-Cang Li, Computer Science Division, University of
- California
at Berkeley, USA
- LAPACK version 3.0 15 June 2000