slasd5(3)

NAME

SLASD5 - subroutine computes the square root of the I-th
eigenvalue of a positive symmetric rank-one modification of a
2-by-2 diagonal matrix diag( D ) * diag( D ) + RHO * Z * trans
pose(Z)

SYNOPSIS

SUBROUTINE SLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
    INTEGER        I
    REAL           DSIGMA, RHO
    REAL           D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )

PURPOSE

This subroutine computes the square root of the I-th
eigenvalue of a positive symmetric rank-one modification of a
2-by-2 diagonal matrix diag( D ) * diag( D ) + RHO * Z * trans
pose(Z) . The diagonal entries in the array D are assumed to
satisfy

0 <= D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the
vector Z is one.

ARGUMENTS

I (input) INTEGER
The index of the eigenvalue to be computed. I = 1
or I = 2.
D (input) REAL array, dimension ( 2 )
The original eigenvalues. We assume 0 <= D(1) <
D(2).
Z (input) REAL array, dimension ( 2 )
The components of the updating vector.
DELTA (output) REAL array, dimension ( 2 )
Contains (D(j) - lambda_I) in its j-th component.
The vector DELTA contains the information necessary to construct
the eigenvectors.
RHO (input) REAL
The scalar in the symmetric updating formula.
DSIGMA (output) REAL The computed lambda_I, the I
th updated eigenvalue.
WORK (workspace) REAL array, dimension ( 2 )
WORK contains (D(j) + sigma_I) in its j-th compo
nent.

FURTHER DETAILS

Based on contributions by
Ren-Cang Li, Computer Science Division, University of
California
at Berkeley, USA
LAPACK version 3.0 15 June 2000
Copyright © 2010-2025 Platon Technologies, s.r.o.           Home | Man pages | tLDP | Documents | Utilities | About
Design by styleshout