sspgvd(3)

NAME

SSPGVD - compute all the eigenvalues, and optionally, the
eigenvectors of a real generalized symmetric-definite eigenprob
lem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
B*A*x=(lambda)*x

SYNOPSIS

SUBROUTINE  SSPGVD(  ITYPE,  JOBZ,  UPLO, N, AP, BP, W, Z,
LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
    CHARACTER      JOBZ, UPLO
    INTEGER        INFO, ITYPE, LDZ, LIWORK, LWORK, N
    INTEGER        IWORK( * )
    REAL           AP( * ), BP( * ), W( * ), WORK( * ), Z(
LDZ, * )

PURPOSE

SSPGVD computes all the eigenvalues, and optionally, the
eigenvectors of a real generalized symmetric-definite eigenprob
lem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or
B*A*x=(lambda)*x. Here A and B are assumed to be symmetric,
stored in packed format, and B is also positive definite.
If eigenvectors are desired, it uses a divide and conquer
algorithm.
The divide and conquer algorithm makes very mild assump
tions about floating point arithmetic. It will work on machines
with a guard digit in add/subtract, or on those binary machines
without guard digits which subtract like the Cray X-MP, Cray Y
MP, Cray C-90, or Cray-2. It could conceivably fail on hexadeci
mal or decimal machines without guard digits, but we know of
none.

ARGUMENTS

ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
AP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the sym
metric matrix A, packed columnwise in a linear array. The j-th
column of A is stored in the array AP as follows: if UPLO = 'U',
AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i +
(j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
BP (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the sym
metric matrix B, packed columnwise in a linear array. The j-th
column of B is stored in the array BP as follows: if UPLO = 'U',
BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; if UPLO = 'L', BP(i +
(j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the
Cholesky factorization B = U**T*U or B = L*L**T, in the same
storage format as B.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the
matrix Z of eigenvectors. The eigenvectors are normalized as
follows: if ITYPE = 1 or 2, Z**T*B*Z = I; if ITYPE = 3,
Z**T*inv(B)*Z = I. If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1,
and if JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) REAL array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal
LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. If N <= 1,
LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >= 2*N. If JOBZ =
'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed;
the routine only calculates the optimal size of the WORK array,
returns this value as the first entry of the WORK array, and no
error message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (LI
WORK)
On exit, if INFO = 0, IWORK(1) returns the optimal
LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. If JOBZ = 'N'
or N <= 1, LIWORK >= 1. If JOBZ = 'V' and N > 1, LIWORK >= 3 +
5*N.
If LIWORK = -1, then a workspace query is assumed;
the routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and no
error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille
gal value
> 0: SPPTRF or SSPEVD returned an error code:
<= N: if INFO = i, SSPEVD failed to converge; i
off-diagonal elements of an intermediate tridiagonal form did not
converge to zero; > N: if INFO = N + i, for 1 <= i <= N, then
the leading minor of order i of B is not positive definite. The
factorization of B could not be completed and no eigenvalues or
eigenvectors were computed.

FURTHER DETAILS

Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Ken
tucky, USA
LAPACK version 3.0 15 June 2000
Copyright © 2010-2025 Platon Technologies, s.r.o.           Home | Man pages | tLDP | Documents | Utilities | About
Design by styleshout