stgsja(3)
NAME
- STGSJA - compute the generalized singular value decomposi
- tion (GSVD) of two real upper triangular (or trapezoidal) matri
- ces A and B
SYNOPSIS
SUBROUTINE STGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A,
LDA, B, LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
WORK, NCYCLE, INFO )
CHARACTER JOBQ, JOBU, JOBV
INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M,
N, NCYCLE, P
REAL TOLA, TOLB
REAL A( LDA, * ), ALPHA( * ), B( LDB, * ),
BETA( * ), Q( LDQ, * ), U( LDU, * ), V( LDV, * ), WORK( * )
PURPOSE
- STGSJA computes the generalized singular value decomposi
- tion (GSVD) of two real upper triangular (or trapezoidal) matri
- ces A and B. On entry, it is assumed that matrices A and B have
- the following forms, which may be obtained by the preprocessing
- subroutine SGGSVP from a general M-by-N matrix A and P-by-N ma
- trix B:
N-K-L K L
- A = K ( 0 A12 A13 ) if M-K-L >= 0;
- L ( 0 0 A23 )
- M-K-L ( 0 0 0 )
N-K-L K L
- A = K ( 0 A12 A13 ) if M-K-L < 0;
- M-K ( 0 0 A23 )
N-K-L K L
- B = L ( 0 0 B13 )
P-L ( 0 0 0 )
- where the K-by-K matrix A12 and L-by-L matrix B13 are non
- singular upper triangular; A23 is L-by-L upper triangular if M-K
- L >= 0, otherwise A23 is (M-K)-by-L upper trapezoidal.
- On exit,
U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R ),
- where U, V and Q are orthogonal matrices, Z' denotes the
- transpose of Z, R is a nonsingular upper triangular matrix, and
- D1 and D2 are ``diagonal'' matrices, which are of the following
- structures:
- If M-K-L >= 0,
K L
- D1 = K ( I 0 )
- L ( 0 C )
- M-K-L ( 0 0 )
K L
- D2 = L ( 0 S )
- P-L ( 0 0 )
N-K-L K L
- ( 0 R ) = K ( 0 R11 R12 ) K
L ( 0 0 R22 ) L
- where
C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
S = diag( BETA(K+1), ... , BETA(K+L) ),
C**2 + S**2 = I.
- R is stored in A(1:K+L,N-K-L+1:N) on exit.
- If M-K-L < 0,
K M-K K+L-M
- D1 = K ( I 0 0 )
- M-K ( 0 C 0 )
K M-K K+L-M
- D2 = M-K ( 0 S 0 )
K+L-M ( 0 0 I )
P-L ( 0 0 0 )
N-K-L K M-K K+L-M
M-K ( 0 0 R22 R23 )
K+L-M ( 0 0 0 R33 )
- where
C = diag( ALPHA(K+1), ... , ALPHA(M) ),
S = diag( BETA(K+1), ... , BETA(M) ),
C**2 + S**2 = I.
- R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33
- is stored
- ( 0 R22 R23 )
- in B(M-K+1:L,N+M-K-L+1:N) on exit.
- The computation of the orthogonal transformation matrices
- U, V or Q is optional. These matrices may either be formed ex
- plicitly, or they may be postmultiplied into input matrices U1,
- V1, or Q1.
ARGUMENTS
- JOBU (input) CHARACTER*1
- = 'U': U must contain an orthogonal matrix U1 on
- entry, and the product U1*U is returned; = 'I': U is initialized
- to the unit matrix, and the orthogonal matrix U is returned; =
- 'N': U is not computed.
- JOBV (input) CHARACTER*1
- = 'V': V must contain an orthogonal matrix V1 on
- entry, and the product V1*V is returned; = 'I': V is initialized
- to the unit matrix, and the orthogonal matrix V is returned; =
- 'N': V is not computed.
- JOBQ (input) CHARACTER*1
- = 'Q': Q must contain an orthogonal matrix Q1 on
- entry, and the product Q1*Q is returned; = 'I': Q is initialized
- to the unit matrix, and the orthogonal matrix Q is returned; =
- 'N': Q is not computed.
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
- P (input) INTEGER
- The number of rows of the matrix B. P >= 0.
- N (input) INTEGER
- The number of columns of the matrices A and B. N
- >= 0.
- K (input) INTEGER
- L (input) INTEGER K and L specify the sub
- blocks in the input matrices A and B:
A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N
- L+1:N) of A and B, whose GSVD is going to be computed by STGSJA.
- See Further details.
- A (input/output) REAL array, dimension (LDA,N)
- On entry, the M-by-N matrix A. On exit, A(N
- K+1:N,1:MIN(K+L,M) ) contains the triangular matrix R or part of
- R. See Purpose for details.
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >=
- max(1,M).
- B (input/output) REAL array, dimension (LDB,N)
- On entry, the P-by-N matrix B. On exit, if neces
- sary, B(M-K+1:L,N+M-K-L+1:N) contains a part of R. See Purpose
- for details.
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >=
- max(1,P).
- TOLA (input) REAL
- TOLB (input) REAL TOLA and TOLB are the conver
- gence criteria for the Jacobi- Kogbetliantz iteration procedure.
- Generally, they are the same as used in the preprocessing step,
- say TOLA = max(M,N)*norm(A)*MACHEPS, TOLB =
- max(P,N)*norm(B)*MACHEPS.
- ALPHA (output) REAL array, dimension (N)
- BETA (output) REAL array, dimension (N) On ex
- it, ALPHA and BETA contain the generalized singular value pairs
- of A and B; ALPHA(1:K) = 1,
BETA(1:K) = 0, and if M-K-L >= 0, ALPHA(K+1:K+L)
- = diag(C),
BETA(K+1:K+L) = diag(S), or if M-K-L < 0, AL
- PHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
BETA(K+1:M) = S, BETA(M+1:K+L) = 1. Furthermore,
- if K+L < N, ALPHA(K+L+1:N) = 0 and
BETA(K+L+1:N) = 0.
- U (input/output) REAL array, dimension (LDU,M)
- On entry, if JOBU = 'U', U must contain a matrix
- U1 (usually the orthogonal matrix returned by SGGSVP). On exit,
- if JOBU = 'I', U contains the orthogonal matrix U; if JOBU = 'U',
- U contains the product U1*U. If JOBU = 'N', U is not referenced.
- LDU (input) INTEGER
- The leading dimension of the array U. LDU >=
- max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.
- V (input/output) REAL array, dimension (LDV,P)
- On entry, if JOBV = 'V', V must contain a matrix
- V1 (usually the orthogonal matrix returned by SGGSVP). On exit,
- if JOBV = 'I', V contains the orthogonal matrix V; if JOBV = 'V',
- V contains the product V1*V. If JOBV = 'N', V is not referenced.
- LDV (input) INTEGER
- The leading dimension of the array V. LDV >=
- max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.
- Q (input/output) REAL array, dimension (LDQ,N)
- On entry, if JOBQ = 'Q', Q must contain a matrix
- Q1 (usually the orthogonal matrix returned by SGGSVP). On exit,
- if JOBQ = 'I', Q contains the orthogonal matrix Q; if JOBQ = 'Q',
- Q contains the product Q1*Q. If JOBQ = 'N', Q is not referenced.
- LDQ (input) INTEGER
- The leading dimension of the array Q. LDQ >=
- max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.
- WORK (workspace) REAL array, dimension (2*N)
- NCYCLE (output) INTEGER
- The number of cycles required for convergence.
- INFO (output) INTEGER
- = 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille
- gal value.
= 1: the procedure does not converge after MAXIT
- cycles.
PARAMETERS
- MAXIT INTEGER
- MAXIT specifies the total loops that the iterative
- procedure may take. If after MAXIT cycles, the routine fails to
- converge, we return INFO = 1.
- Further Details ===============
- STGSJA essentially uses a variant of Kogbetliantz
- algorithm to reduce min(L,M-K)-by-L triangular (or trapezoidal)
- matrix A23 and L-by-L matrix B13 to the form:
- U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,
- where U1, V1 and Q1 are orthogonal matrix, and Z'
- is the transpose of Z. C1 and S1 are diagonal matrices satisfy
- ing
- C1**2 + S1**2 = I,
- and R1 is an L-by-L nonsingular upper triangular
- matrix.
- LAPACK version 3.0 15 June 2000