zlags2(3)

NAME

ZLAGS2 - compute 2-by-2 unitary matrices U, V and Q, such
that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0 A3
) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x )
or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2
A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x
) where U = ( CSU SNU ), V = ( CSV SNV ),

SYNOPSIS

SUBROUTINE  ZLAGS2(  UPPER,  A1,  A2, A3, B1, B2, B3, CSU,
SNU, CSV, SNV, CSQ, SNQ )
    LOGICAL        UPPER
    DOUBLE         PRECISION A1, A3, B1, B3, CSQ, CSU, CSV
    COMPLEX*16     A2, B2, SNQ, SNU, SNV

PURPOSE

ZLAGS2 computes 2-by-2 unitary matrices U, V and Q, such
that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0 A3 )
( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or
if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2 A3 )
( 0 x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x )
where U = ( CSU SNU ), V = ( CSV SNV ), ( -CONJG(SNU) CSU
) ( -CONJG(SNV) CSV )

Q = ( CSQ SNQ )
( -CONJG(SNQ) CSQ )
Z' denotes the conjugate transpose of Z.
The rows of the transformed A and B are parallel. More
over, if the input 2-by-2 matrix A is not zero, then the trans
formed (1,1) entry of A is not zero. If the input matrices A and
B are both not zero, then the transformed (2,2) element of B is
not zero, except when the first rows of input A and B are paral
lel and the second rows are zero.

ARGUMENTS

UPPER (input) LOGICAL
= .TRUE.: the input matrices A and B are upper
triangular.
= .FALSE.: the input matrices A and B are lower
triangular.
A1 (input) DOUBLE PRECISION
A2 (input) COMPLEX*16 A3 (input) DOUBLE
PRECISION On entry, A1, A2 and A3 are elements of the input
2-by-2 upper (lower) triangular matrix A.
B1 (input) DOUBLE PRECISION
B2 (input) COMPLEX*16 B3 (input) DOUBLE
PRECISION On entry, B1, B2 and B3 are elements of the input
2-by-2 upper (lower) triangular matrix B.
CSU (output) DOUBLE PRECISION
SNU (output) COMPLEX*16 The desired unitary
matrix U.
CSV (output) DOUBLE PRECISION
SNV (output) COMPLEX*16 The desired unitary
matrix V.
CSQ (output) DOUBLE PRECISION
SNQ (output) COMPLEX*16 The desired unitary
matrix Q.
LAPACK version 3.0 15 June 2000
Copyright © 2010-2025 Platon Technologies, s.r.o.           Home | Man pages | tLDP | Documents | Utilities | About
Design by styleshout