zlalsa(3)

NAME

ZLALSA - i an itermediate step in solving the least
squares problem by computing the SVD of the coefficient matrix in
compact form (The singular vectors are computed as products of
simple orthorgonal matrices.)

SYNOPSIS

SUBROUTINE  ZLALSA(  ICOMPQ,  SMLSIZ, N, NRHS, B, LDB, BX,
LDBX, U, LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,  GIVCOL,  LDGCOL, PERM, GIVNUM, C, S, RWORK, IWORK, INFO )
    INTEGER         ICOMPQ,  INFO, LDB, LDBX, LDGCOL, LDU,
N, NRHS, SMLSIZ
    INTEGER        GIVCOL(  LDGCOL,  *  ),  GIVPTR(  *  ),
IWORK( * ), K( * ), PERM( LDGCOL, * )
    DOUBLE         PRECISION C( * ), DIFL( LDU, * ), DIFR(
LDU, * ), GIVNUM( LDU, * ), POLES( LDU, * ), RWORK( * ), S( *  ),
U( LDU, * ), VT( LDU, * ), Z( LDU, * )
    COMPLEX*16     B( LDB, * ), BX( LDBX, * )

PURPOSE

ZLALSA is an itermediate step in solving the least squares
problem by computing the SVD of the coefficient matrix in compact
form (The singular vectors are computed as products of simple or
thorgonal matrices.). If ICOMPQ = 0, ZLALSA applies the inverse
of the left singular vector matrix of an upper bidiagonal matrix
to the right hand side; and if ICOMPQ = 1, ZLALSA applies the
right singular vector matrix to the right hand side. The singular
vector matrices were generated in compact form by ZLALSA.

ARGUMENTS

ICOMPQ (input) INTEGER Specifies whether the left or the
right singular vector matrix is involved. = 0: Left singular
vector matrix
= 1: Right singular vector matrix
SMLSIZ (input) INTEGER The maximum size of the subproblems
at the bottom of the computation tree.
N (input) INTEGER
The row and column dimensions of the upper bidiago
nal matrix.
NRHS (input) INTEGER
The number of columns of B and BX. NRHS must be at
least 1.
B (input) COMPLEX*16 array, dimension ( LDB, NRHS )
On input, B contains the right hand sides of the
least squares problem in rows 1 through M. On output, B contains
the solution X in rows 1 through N.
LDB (input) INTEGER
The leading dimension of B in the calling subpro
gram. LDB must be at least max(1,MAX( M, N ) ).
BX (output) COMPLEX*16 array, dimension ( LDBX, NRHS )
On exit, the result of applying the left or right
singular vector matrix to B.
LDBX (input) INTEGER
The leading dimension of BX.
U (input) DOUBLE PRECISION array, dimension ( LDU,
SMLSIZ ).
On entry, U contains the left singular vector ma
trices of all subproblems at the bottom level.
LDU (input) INTEGER, LDU = > N.
The leading dimension of arrays U, VT, DIFL, DIFR,
POLES, GIVNUM, and Z.
VT (input) DOUBLE PRECISION array, dimension ( LDU,
SMLSIZ+1 ).
On entry, VT' contains the right singular vector
matrices of all subproblems at the bottom level.
K (input) INTEGER array, dimension ( N ).
DIFL (input) DOUBLE PRECISION array, dimension ( LDU,
NLVL ).
where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
DIFR (input) DOUBLE PRECISION array, dimension ( LDU, 2
* NLVL ).
On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
distances between singular values on the I-th level and singular
values on the (I -1)-th level, and DIFR(*, 2 * I) record the nor
malizing factors of the right singular vectors matrices of sub
problems on I-th level.
Z (input) DOUBLE PRECISION array, dimension ( LDU,
NLVL ).
On entry, Z(1, I) contains the components of the
deflation- adjusted updating row vector for subproblems on the I
th level.
POLES (input) DOUBLE PRECISION array, dimension ( LDU, 2
* NLVL ).
On entry, POLES(*, 2 * I -1: 2 * I) contains the
new and old singular values involved in the secular equations on
the I-th level.
GIVPTR (input) INTEGER array, dimension ( N ). On
entry, GIVPTR( I ) records the number of Givens rotations per
formed on the I-th problem on the computation tree.
GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2
* NLVL ). On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I)
records the locations of Givens rotations performed on the I-th
level on the computation tree.
LDGCOL (input) INTEGER, LDGCOL = > N. The leading
dimension of arrays GIVCOL and PERM.
PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ).
On entry, PERM(*, I) records permutations done on
the I-th level of the computation tree.
GIVNUM (input) DOUBLE PRECISION array, dimension (
LDU, 2 * NLVL ). On entry, GIVNUM(*, 2 *I -1 : 2 * I) records
the C- and S- values of Givens rotations performed on the I-th
level on the computation tree.
C (input) DOUBLE PRECISION array, dimension ( N ).
On entry, if the I-th subproblem is not square, C(
I ) contains the C-value of a Givens rotation related to the
right null space of the I-th subproblem.
S (input) DOUBLE PRECISION array, dimension ( N ).
On entry, if the I-th subproblem is not square, S(
I ) contains the S-value of a Givens rotation related to the
right null space of the I-th subproblem.
RWORK (workspace) DOUBLE PRECISION array, dimension at
least
max ( N, (SMLSZ+1)*NRHS*3 ).
IWORK (workspace) INTEGER array.
The dimension must be at least 3 * N
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an ille
gal value.

FURTHER DETAILS

Based on contributions by
Ming Gu and Ren-Cang Li, Computer Science Division,
University of
California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
LAPACK version 3.0 15 June 2000
Copyright © 2010-2025 Platon Technologies, s.r.o.           Home | Man pages | tLDP | Documents | Utilities | About
Design by styleshout