zlalsa(3)
NAME
- ZLALSA - i an itermediate step in solving the least
- squares problem by computing the SVD of the coefficient matrix in
- compact form (The singular vectors are computed as products of
- simple orthorgonal matrices.)
SYNOPSIS
SUBROUTINE ZLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX,
LDBX, U, LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK, IWORK, INFO )
INTEGER ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU,
N, NRHS, SMLSIZ
INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ),
IWORK( * ), K( * ), PERM( LDGCOL, * )
DOUBLE PRECISION C( * ), DIFL( LDU, * ), DIFR(
LDU, * ), GIVNUM( LDU, * ), POLES( LDU, * ), RWORK( * ), S( * ),
U( LDU, * ), VT( LDU, * ), Z( LDU, * )
COMPLEX*16 B( LDB, * ), BX( LDBX, * )
PURPOSE
- ZLALSA is an itermediate step in solving the least squares
- problem by computing the SVD of the coefficient matrix in compact
- form (The singular vectors are computed as products of simple or
- thorgonal matrices.). If ICOMPQ = 0, ZLALSA applies the inverse
- of the left singular vector matrix of an upper bidiagonal matrix
- to the right hand side; and if ICOMPQ = 1, ZLALSA applies the
- right singular vector matrix to the right hand side. The singular
- vector matrices were generated in compact form by ZLALSA.
ARGUMENTS
- ICOMPQ (input) INTEGER Specifies whether the left or the
- right singular vector matrix is involved. = 0: Left singular
- vector matrix
= 1: Right singular vector matrix
- SMLSIZ (input) INTEGER The maximum size of the subproblems
- at the bottom of the computation tree.
- N (input) INTEGER
- The row and column dimensions of the upper bidiago
- nal matrix.
- NRHS (input) INTEGER
- The number of columns of B and BX. NRHS must be at
- least 1.
- B (input) COMPLEX*16 array, dimension ( LDB, NRHS )
- On input, B contains the right hand sides of the
- least squares problem in rows 1 through M. On output, B contains
- the solution X in rows 1 through N.
- LDB (input) INTEGER
- The leading dimension of B in the calling subpro
- gram. LDB must be at least max(1,MAX( M, N ) ).
- BX (output) COMPLEX*16 array, dimension ( LDBX, NRHS )
- On exit, the result of applying the left or right
- singular vector matrix to B.
- LDBX (input) INTEGER
- The leading dimension of BX.
- U (input) DOUBLE PRECISION array, dimension ( LDU,
- SMLSIZ ).
- On entry, U contains the left singular vector ma
- trices of all subproblems at the bottom level.
- LDU (input) INTEGER, LDU = > N.
- The leading dimension of arrays U, VT, DIFL, DIFR,
- POLES, GIVNUM, and Z.
- VT (input) DOUBLE PRECISION array, dimension ( LDU,
- SMLSIZ+1 ).
- On entry, VT' contains the right singular vector
- matrices of all subproblems at the bottom level.
- K (input) INTEGER array, dimension ( N ).
- DIFL (input) DOUBLE PRECISION array, dimension ( LDU,
- NLVL ).
- where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
- DIFR (input) DOUBLE PRECISION array, dimension ( LDU, 2
- * NLVL ).
- On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
- distances between singular values on the I-th level and singular
- values on the (I -1)-th level, and DIFR(*, 2 * I) record the nor
- malizing factors of the right singular vectors matrices of sub
- problems on I-th level.
- Z (input) DOUBLE PRECISION array, dimension ( LDU,
- NLVL ).
- On entry, Z(1, I) contains the components of the
- deflation- adjusted updating row vector for subproblems on the I
- th level.
- POLES (input) DOUBLE PRECISION array, dimension ( LDU, 2
- * NLVL ).
- On entry, POLES(*, 2 * I -1: 2 * I) contains the
- new and old singular values involved in the secular equations on
- the I-th level.
- GIVPTR (input) INTEGER array, dimension ( N ). On
- entry, GIVPTR( I ) records the number of Givens rotations per
- formed on the I-th problem on the computation tree.
- GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2
- * NLVL ). On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I)
- records the locations of Givens rotations performed on the I-th
- level on the computation tree.
- LDGCOL (input) INTEGER, LDGCOL = > N. The leading
- dimension of arrays GIVCOL and PERM.
- PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ).
- On entry, PERM(*, I) records permutations done on
- the I-th level of the computation tree.
- GIVNUM (input) DOUBLE PRECISION array, dimension (
- LDU, 2 * NLVL ). On entry, GIVNUM(*, 2 *I -1 : 2 * I) records
- the C- and S- values of Givens rotations performed on the I-th
- level on the computation tree.
- C (input) DOUBLE PRECISION array, dimension ( N ).
- On entry, if the I-th subproblem is not square, C(
- I ) contains the C-value of a Givens rotation related to the
- right null space of the I-th subproblem.
- S (input) DOUBLE PRECISION array, dimension ( N ).
- On entry, if the I-th subproblem is not square, S(
- I ) contains the S-value of a Givens rotation related to the
- right null space of the I-th subproblem.
- RWORK (workspace) DOUBLE PRECISION array, dimension at
- least
- max ( N, (SMLSZ+1)*NRHS*3 ).
- IWORK (workspace) INTEGER array.
- The dimension must be at least 3 * N
- INFO (output) INTEGER
- = 0: successful exit.
< 0: if INFO = -i, the i-th argument had an ille
- gal value.
FURTHER DETAILS
- Based on contributions by
- Ming Gu and Ren-Cang Li, Computer Science Division,
- University of
California at Berkeley, USA
- Osni Marques, LBNL/NERSC, USA
- LAPACK version 3.0 15 June 2000