zlaqp2(3)
NAME
- ZLAQP2 - compute a QR factorization with column pivoting
- of the block A(OFFSET+1:M,1:N)
SYNOPSIS
SUBROUTINE ZLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1,
VN2, WORK )
INTEGER LDA, M, N, OFFSET
INTEGER JPVT( * )
DOUBLE PRECISION VN1( * ), VN2( * )
COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
PURPOSE
- ZLAQP2 computes a QR factorization with column pivoting of
- the block A(OFFSET+1:M,1:N). The block A(1:OFFSET,1:N) is accord
- ingly pivoted, but not factorized.
ARGUMENTS
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
- OFFSET (input) INTEGER
- The number of rows of the matrix A that must be
- pivoted but no factorized. OFFSET >= 0.
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the M-by-N matrix A. On exit, the upper
- triangle of block A(OFFSET+1:M,1:N) is the triangular factor ob
- tained; the elements in block A(OFFSET+1:M,1:N) below the diago
- nal, together with the array TAU, represent the orthogonal matrix
- Q as a product of elementary reflectors. Block A(1:OFFSET,1:N)
- has been accordingly pivoted, but no factorized.
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >=
- max(1,M).
- JPVT (input/output) INTEGER array, dimension (N)
- On entry, if JPVT(i) .ne. 0, the i-th column of A
- is permuted to the front of A*P (a leading column); if JPVT(i) =
- 0, the i-th column of A is a free column. On exit, if JPVT(i) =
- k, then the i-th column of A*P was the k-th column of A.
- TAU (output) COMPLEX*16 array, dimension (min(M,N))
- The scalar factors of the elementary reflectors.
- VN1 (input/output) DOUBLE PRECISION array, dimension
- (N)
- The vector with the partial column norms.
- VN2 (input/output) DOUBLE PRECISION array, dimension
- (N)
- The vector with the exact column norms.
- WORK (workspace) COMPLEX*16 array, dimension (N)
FURTHER DETAILS
- Based on contributions by
- G. Quintana-Orti, Depto. de Informatica, Universidad
- Jaime I, Spain
X. Sun, Computer Science Dept., Duke University, USA
- LAPACK version 3.0 15 June 2000