zlar1v(3)
NAME
- ZLAR1V - compute the (scaled) r-th column of the inverse
- of the sumbmatrix in rows B1 through BN of the tridiagonal matrix
- L D L^T - sigma I
SYNOPSIS
SUBROUTINE ZLAR1V( N, B1, BN, SIGMA, D, L, LD, LLD, GERSCH, Z, ZTZ, MINGMA, R, ISUPPZ, WORK )
INTEGER B1, BN, N, R
DOUBLE PRECISION MINGMA, SIGMA, ZTZ
INTEGER ISUPPZ( * )
DOUBLE PRECISION D( * ), GERSCH( * ), L( * ),
LD( * ), LLD( * ), WORK( * )
COMPLEX*16 Z( * )
PURPOSE
- ZLAR1V computes the (scaled) r-th column of the inverse of
- the sumbmatrix in rows B1 through BN of the tridiagonal matrix L
- D L^T - sigma I. The following steps accomplish this computation
- : (a) Stationary qd transform, L D L^T - sigma I = L(+) D(+)
- L(+)^T, (b) Progressive qd transform, L D L^T - sigma I = U(-)
- D(-) U(-)^T, (c) Computation of the diagonal elements of the in
- verse of
- L D L^T - sigma I by combining the above transforms,
- and choosing
r as the index where the diagonal of the inverse is
- (one of the)
largest in magnitude.
- (d) Computation of the (scaled) r-th column of the inverse
- using the
- twisted factorization obtained by combining the top
- part of the
the stationary and the bottom part of the progressive
- transform.
ARGUMENTS
- N (input) INTEGER
- The order of the matrix L D L^T.
- B1 (input) INTEGER
- First index of the submatrix of L D L^T.
- BN (input) INTEGER
- Last index of the submatrix of L D L^T.
- SIGMA (input) DOUBLE PRECISION
- The shift. Initially, when R = 0, SIGMA should be
- a good approximation to an eigenvalue of L D L^T.
- L (input) DOUBLE PRECISION array, dimension (N-1)
- The (n-1) subdiagonal elements of the unit bidi
- agonal matrix L, in elements 1 to N-1.
- D (input) DOUBLE PRECISION array, dimension (N)
- The n diagonal elements of the diagonal matrix D.
- LD (input) DOUBLE PRECISION array, dimension (N-1)
- The n-1 elements L(i)*D(i).
- LLD (input) DOUBLE PRECISION array, dimension (N-1)
- The n-1 elements L(i)*L(i)*D(i).
- GERSCH (input) DOUBLE PRECISION array, dimension (2*N)
- The n Gerschgorin intervals. These are used to
- restrict the initial search for R, when R is input as 0.
- Z (output) COMPLEX*16 array, dimension (N)
- The (scaled) r-th column of the inverse. Z(R) is
- returned to be 1.
- ZTZ (output) DOUBLE PRECISION
- The square of the norm of Z.
- MINGMA (output) DOUBLE PRECISION
- The reciprocal of the largest (in magnitude) di
- agonal element of the inverse of L D L^T - sigma I.
- R (input/output) INTEGER
- Initially, R should be input to be 0 and is then
- output as the index where the diagonal element of the inverse is
- largest in magnitude. In later iterations, this same value of R
- should be input.
- ISUPPZ (output) INTEGER array, dimension (2)
- The support of the vector in Z, i.e., the vector
- Z is nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ).
- WORK (workspace) DOUBLE PRECISION array, dimension
- (4*N)
FURTHER DETAILS
- Based on contributions by
- Inderjit Dhillon, IBM Almaden, USA
Osni Marques, LBNL/NERSC, USA
Ken Stanley, Computer Science Division, University of
California at Berkeley, USA
- LAPACK version 3.0 15 June 2000