zlarzt(3)
NAME
- ZLARZT - form the triangular factor T of a complex block
- reflector H of order > n, which is defined as a product of k ele
- mentary reflectors
SYNOPSIS
SUBROUTINE ZLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T,
LDT )
CHARACTER DIRECT, STOREV
INTEGER K, LDT, LDV, N
COMPLEX*16 T( LDT, * ), TAU( * ), V( LDV, * )
PURPOSE
- ZLARZT forms the triangular factor T of a complex block
- reflector H of order > n, which is defined as a product of k ele
- mentary reflectors. If DIRECT = 'F', H = H(1) H(2) . . . H(k)
- and T is upper triangular;
- If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower
- triangular.
- If STOREV = 'C', the vector which defines the elementary
- reflector H(i) is stored in the i-th column of the array V, and
H = I - V * T * V'
- If STOREV = 'R', the vector which defines the elementary
- reflector H(i) is stored in the i-th row of the array V, and
H = I - V' * T * V
- Currently, only STOREV = 'R' and DIRECT = 'B' are support
- ed.
ARGUMENTS
- DIRECT (input) CHARACTER*1
- Specifies the order in which the elementary re
- flectors are multiplied to form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (Forward, not sup
- ported yet)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
- STOREV (input) CHARACTER*1
- Specifies how the vectors which define the elemen
- tary reflectors are stored (see also Further Details):
= 'R': rowwise
- N (input) INTEGER
- The order of the block reflector H. N >= 0.
- K (input) INTEGER
- The order of the triangular factor T (= the number
- of elementary reflectors). K >= 1.
- V (input/output) COMPLEX*16 array, dimension
- (LDV,K) if STOREV = 'C' (LDV,N) if STOREV = 'R'
- The matrix V. See further details.
- LDV (input) INTEGER
- The leading dimension of the array V. If STOREV =
- 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
- TAU (input) COMPLEX*16 array, dimension (K)
- TAU(i) must contain the scalar factor of the ele
- mentary reflector H(i).
- T (output) COMPLEX*16 array, dimension (LDT,K)
- The k by k triangular factor T of the block re
- flector. If DIRECT = 'F', T is upper triangular; if DIRECT =
- 'B', T is lower triangular. The rest of the array is not used.
- LDT (input) INTEGER
- The leading dimension of the array T. LDT >= K.
FURTHER DETAILS
- Based on contributions by
- A. Petitet, Computer Science Dept., Univ. of Tenn.,
- Knoxville, USA
- The shape of the matrix V and the storage of the vectors
- which define the H(i) is best illustrated by the following exam
- ple with n = 5 and k = 3. The elements equal to 1 are not stored;
- the corresponding array elements are modified but restored on ex
- it. The rest of the array is not used.
- DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and
- STOREV = 'R':
V
- ( v1 v2 v3 ) /
- ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 )
- V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2
- . . . 1 )
- ( v1 v2 v3 ) ( v3 v3 v3 v3 v3
- . . 1 )
( v1 v2 v3 )
- DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and
- STOREV = 'R':
V
- 1 /
- . 1 ( 1 . . . . v1 v1 v1 v1 v1 )
. . 1 ( . 1 . . . v2 v2
- v2 v2 v2 )
. . . ( . . 1 . . v3 v3
- v3 v3 v3 )
. . .
- ( v1 v2 v3 )
( v1 v2 v3 )
- V = ( v1 v2 v3 )
- ( v1 v2 v3 )
( v1 v2 v3 )
- LAPACK version 3.0 15 June 2000