zunmbr(3)

NAME

ZUNMBR - VECT = 'Q', ZUNMBR overwrites the general complex
M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

SUBROUTINE  ZUNMBR(  VECT,  SIDE,  TRANS, M, N, K, A, LDA,
TAU, C, LDC, WORK, LWORK, INFO )
    CHARACTER      SIDE, TRANS, VECT
    INTEGER        INFO, K, LDA, LDC, LWORK, M, N
    COMPLEX*16     A( LDA, * ), C( LDC, *  ),  TAU(  *  ),
WORK( * )

PURPOSE

If VECT = 'Q', ZUNMBR overwrites the general complex M-by
N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q
TRANS = 'C': Q**H * C C * Q**H
If VECT = 'P', ZUNMBR overwrites the general complex M-by
N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': P * C C * P
TRANS = 'C': P**H * C C * P**H
Here Q and P**H are the unitary matrices determined by
ZGEBRD when reducing a complex matrix A to bidiagonal form: A = Q
* B * P**H. Q and P**H are defined as products of elementary re
flectors H(i) and G(i) respectively.
Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq
is the order of the unitary matrix Q or P**H that is applied.
If VECT = 'Q', A is assumed to have been an NQ-by-K ma
trix: if nq >= k, Q = H(1) H(2) . . . H(k);
if nq < k, Q = H(1) H(2) . . . H(nq-1).
If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
if k < nq, P = G(1) G(2) . . . G(k);
if k >= nq, P = G(1) G(2) . . . G(nq-1).

ARGUMENTS

VECT (input) CHARACTER*1
= 'Q': apply Q or Q**H;
= 'P': apply P or P**H.
SIDE (input) CHARACTER*1
= 'L': apply Q, Q**H, P or P**H from the Left;
= 'R': apply Q, Q**H, P or P**H from the Right.
TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q or P;
= 'C': Conjugate transpose, apply Q**H or P**H.
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
If VECT = 'Q', the number of columns in the origi
nal matrix reduced by ZGEBRD. If VECT = 'P', the number of rows
in the original matrix reduced by ZGEBRD. K >= 0.
A (input) COMPLEX*16 array, dimension
(LDA,min(nq,K)) if VECT = 'Q' (LDA,nq) if
VECT = 'P' The vectors which define the elementary reflectors
H(i) and G(i), whose products determine the matrices Q and P, as
returned by ZGEBRD.
LDA (input) INTEGER
The leading dimension of the array A. If VECT =
'Q', LDA >= max(1,nq); if VECT = 'P', LDA >= max(1,min(nq,K)).
TAU (input) COMPLEX*16 array, dimension (min(nq,K))
TAU(i) must contain the scalar factor of the ele
mentary reflector H(i) or G(i) which determines Q or P, as re
turned by ZGEBRD in the array argument TAUQ or TAUP.
C (input/output) COMPLEX*16 array, dimension (LDC,N)
On entry, the M-by-N matrix C. On exit, C is
overwritten by Q*C or Q**H*C or C*Q**H or C*Q or P*C or P**H*C or
C*P or C*P**H.
LDC (input) INTEGER
The leading dimension of the array C. LDC >=
max(1,M).
WORK (workspace/output) COMPLEX*16 array, dimension
(LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal
LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. If SIDE = 'L',
LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum
performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if
SIDE = 'R', where NB is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed;
the routine only calculates the optimal size of the WORK array,
returns this value as the first entry of the WORK array, and no
error message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille
gal value
LAPACK version 3.0 15 June 2000
Copyright © 2010-2025 Platon Technologies, s.r.o.           Home | Man pages | tLDP | Documents | Utilities | About
Design by styleshout