Complex(3o)
NAME
Complex - Complex numbers.
Module
Module Complex
Documentation
- Module Complex
- : sig end
- Complex numbers.
- This module provides arithmetic operations on complex numbers. Complex numbers are represented by their real and imaginary parts (cartesian representation). Each part is represented by a double-precision floating-point number (type float ).
- type t = {
- re : float ;
im : float ;
} - The type of complex numbers. re is the real part and im the imaginary part.
- val zero : t
- The complex number 0 .
- val one : t
- The complex number 1 .
- val i : t
- The complex number i .
- val neg : t -> t
- Unary negation.
- val conj : t -> t
- Conjugate: given the complex x + i.y , returns x - i.y .
- val add : t -> t -> t
- Addition
- val sub : t -> t -> t
- Subtraction
- val mul : t -> t -> t
- Multiplication
- val inv : t -> t
- Multiplicative inverse ( 1/z ).
- val div : t -> t -> t
- Division
- val sqrt : t -> t
- Square root. The result x + i.y is such that x > 0 or x = 0 and y >= 0 . This function has a discontinuity along the negative real axis.
- val norm2 : t -> float
- Norm squared: given x + i.y , returns x^2 + y^2 .
- val norm : t -> float
- Norm: given x + i.y , returns sqrt(x^2 + y^2) .
- val arg : t -> float
- Argument. The argument of a complex number is the angle in the complex plane between the positive real axis and a line passing through zero and the number. This angle ranges from -pi to pi . This function has a discontinuity along the negative real axis.
- val polar : float -> float -> t
- polar norm arg returns the complex having norm norm and argument arg .
- val exp : t -> t
- Exponentiation. exp z returns e to the z power.
- val log : t -> t
- Natural logarithm (in base e ).
- val pow : t -> t -> t
- Power function. pow z1 z2 returns z1 to the z2 power.