ISAKMPD.CONF(5)
NAME
isakmpd.conf -- configuration file for isakmpd
DESCRIPTION
isakmpd.conf is the configuration file for the isakmpd daemon managing
security association and key management for the IPsec layer of the kernel's networking stack.
The file is of a well known type of format called .INI style, named after
the suffix used by an overrated windowing environment for its configuration files. This format consists of sections, each beginning with a line
looking like:
[Section name]
Between the brackets is the name of the section following this section
header. Inside a section many tag/value pairs can be stored, each one
looking like:
Tag=Value
If the value needs more space than fits on a single line it's possible to
continue it on the next by ending the first with a backslash character
immediately before the newline character. This method can extend a value
for an arbitrary number of lines.
Comments can be put anywhere in the file by using a hash mark ('#'). The
comment extends to the end of the current line.
Often the right-hand side values consist of other section names. This
results in a tree structure. Some values are treated as a list of several scalar values. Such lists always use a comma character as the separator. Some values are formatted like this: X,Y:Z, which is an
offer/accept syntax, where X is a value we offer and Y:Z is a range of
accepted values, inclusive.
- To activate changes to isakmpd.conf without restarting isakmpd, send a
SIGHUP signal to the daemon process.
- Auto-generated parts of the configuration
- Some predefined section names are recognized by the daemon, avoiding the
need to fully specify the Main Mode transforms and Quick Mode suites,
protocols, and transforms. - For Main Mode:
{DES,BLF,3DES,CAST,AES}-{MD5,SHA}[-GRP{1,2,5,14}][-{DSS,RSA_SIG}] - For Quick Mode:
QM-{proto}[-TRP]-{cipher}[-{hash}][-PFS[-{group}]]-SUITE
where{proto} is either ESP or AH
{cipher} is either DES, 3DES, CAST, BLF or AES
{hash} is either MD5, SHA, RIPEMD, SHA2-{256,384,512}
{group} is either GRP1, GRP2, GRP5 or GRP14For example, 3DES-SHA means: 3DES encryption, SHA hash, and authorization by pre-shared keys. Similarly, QM-ESP-3DES-SHA-PFS-SUITE means: ESP protocol, 3DES encryption, SHA hash, and use Perfect Forward Secrecy.Unless explicitly stated with -GRP1, 2, 5 or 14 transforms and PFS suites use DH group 2. There are currently no predefined ESP+AH Quick Mode
suites.The predefinitions include some default values for the special sections
"General", "Keynote", "X509-certificates", and "Default-phase-1-configuration". These default values are presented in the example below.All autogenerated values can be overridden by manual entries by using the same section and tag names in the configuration file. In particular, the default phase 1 (Main or Aggressive Mode) and phase 2 (Quick Mode) lifetimes can be overridden by these tags under the "General" section;[General]
Default-phase-1-lifetime= 3600,60:86400
Default-phase-2-lifetime= 1200,60:86400The Main Mode lifetime currently defaults to one hour (minimum 60 seconds, maximum 1 day). The Quick Mode lifetime defaults to 20 minutes
(minimum 60 seconds, maximum 1 day).Also, the default phase 1 ID can be set by creating a <Phase1-ID> section, as shown below, and adding this tag under the "General" section;[General]
Default-phase-1-ID= Phase1-ID-name[Phase1-ID-name]
ID-type= USER_FQDN
Name= foo@bar.com - Roots
- General Generic global configuration parameters
Default-phase-1-IDOptional default phase 1 ID name. - Default-phase-1-lifetime
- The default lifetime for autogenerated transforms (phase 1). If unspecified, the value
3600,60:86400 is used as the default. - Default-phase-2-lifetime
- The default lifetime for autogenerated suites
(phase 2). If unspecified, the value
1200,60:86400 is used as the default. - Default-phase-2-suites
- A list of phase 2 suites that will be used
when establishing dynamic SAs. If left
unspecified, QM-ESP-3DES-SHA-PFS-SUITE is
used as the default. - Acquire-Only If this tag is defined, isakmpd will not set
- up flows automatically. This is useful when
flows are configured with ipsecadm(4) or by
other programs like bgpd(8). Thus isakmpd only takes care of the SA establishment. - Check-interval
- The interval between watchdog checks of connections we want up at all times.
- DPD-check-interval
- The interval between RFC 3706 (Dead Peer
Detection) messages. The default value is 0 (zero), which means DPD is disabled. - Exchange-max-time
- How many seconds should an exchange maximally take to set up before we give up.
- Listen-on A list of IP-addresses OK to listen on. This
- list is used as a filter for the set of
addresses the interfaces configured provides. This means that we won't see if an address
given here does not exist on this host, and
thus no error is given for that case. - Loglevel A list of the form class=level, where both
- class and level are numbers. This is similar to the -D command line switch of isakmpd. See isakmpd(8) for details.
- Logverbose If this tag is defined, whatever the value
- is, verbose logging is enabled. This is similar to the -v command line switch of
isakmpd. See isakmpd(8) for details. - NAT-T-Keepalive
- The number of seconds between NAT-T keepalive messages, sent by the peer behind NAT to keep the mapping active. Defaults to 20.
- Policy-file The name of the file that contains keynote(4)
- policies. The default is
"/etc/isakmpd/isakmpd.policy". - Pubkey-directory
- The directory in which isakmpd.conf looks for
explicitly trusted public keys. The default
is "/etc/isakmpd/pubkeys". Read isakmpd(8)
for the required naming convention of the
files in here. - Renegotiate-on-HUP
- If this tag is defined, whatever the value
is, isakmpd will renegotiate all current phase 2 SAs when the daemon receives a SIGHUP signal, or an 'R' is sent to the FIFO interface (see isakmpd(8)). - Retransmits How many times should a message be retrans
- mitted before giving up.
- Shared-SADB If this tag is defined, whatever the value
- is, some semantics of isakmpd.conf are
changed so that multiple instances can run on
top of one SADB and set up SAs with each
other. Specifically this means replay protection will not be asked for, and errors
that can occur when updating an SA with its
parameters a 2nd time will be ignored. - Use-Keynote This tag controls the use of keynote(4) pol
- icy checking. The default value is "yes",
which enables the policy checking. When set to any other value, policies will not be
checked. This is useful when policies for
flows and SA establishment are arranged by
other programs like ipsecadm(8) or bgpd(8). - Phase 1 ISAKMP SA negotiation parameter root
<IP-address> A name of the ISAKMP peer at the given IPaddress.- Default A name of the default ISAKMP peer. Incoming
- phase 1 connections from other IP-addresses
will use this peer name. - This name is used as the section name for
further information to be found. Look at
<ISAKMP-peer> below. - Phase 2 IPsec SA negotiation parameter root
Connections A list of directed IPsec "connection" namesthat should be brought up automatically,
either on first use if the system supports
it, or at startup of the daemon. These names are section names where further information
can be found. Look at <IPsec-connection>
below. Normally any connections mentioned
here are treated as part of the "Passive-connection" list we present below, however there is a flag: "Active-only" that disables this
behaviour. This too is mentioned in the
<IPsec-connection> section, in the "Flags"
tag.- Passive-connections
- A list of IPsec "connection" names we recognize and accept initiations for. These names
are section names where further information
can be found. Look at <IPsec-connection>
below. Currently only the Local-ID and
Remote-ID tags are looked at in those sections, as they are matched against the IDs
given by the initiator. - KeyNote
Credential-directoryA directory containing directories named
after IDs (IP addresses, ``user@domain'', or hostnames) that contain files named
``credentials'' and ``private_key''.The credentials file contains keynote(4) credentials that are sent to a remote IKE daemon when we use the associated ID, or credentials that we may want to consider when doing an
exchange with a remote IKE daemon that uses
that ID. Note that, in the former case, the last credential in the file MUST contain our public key in its Licensees field. More than one credentials may exist in the file. They are separated by whitelines (the format is
essentially the same as that of the policy
file). The credentials are of the same format as the policies described in
isakmpd.policy(5). The only difference is
that the Authorizer field contains a public
key, and the assertion is signed. Signed
assertions can be generated using the
keynote(1) utility.The private_key file contains the private RSA key we use for authentication. If the directory (and the files) exist, they take precedence over X509-based authentication.- X509-Certificates
Accept-self-signedIf this tag is defined, whatever the value
is, certificates that do not originate from a trusted CA but are self-signed will be
accepted.- Ca-directory A directory containing PEM certificates of
- certification authorities that we trust to
sign other certificates. Note that for a CA to be really trusted, it needs to be somehow referred to by policy, in isakmpd.policy(5). The certificates in this directory are used
for the actual X.509 authentication and for
cross-referencing policies that refer to Distinguished Names (DNs). Keeping a separate
directory (as opposed to integrating policies and X.509 CA certificates) allows for maintenance of a list of "well known" CAs without
actually having to trust all (or any) of
them. - Cert-directory
- A directory containing PEM certificates that
we trust to be valid. These certificates are
used in preference to those passed in messages and are required to have a subjectAltName extension containing the certificate
holder identity; usually IP address, FQDN, or User FQDN, as provided by certpatch(8). - Private-key The private key matching the public key of
- our certificate (which should be in the
"Cert-directory", and have an appropriate
subjectAltName field). - Referred-to sections
- <ISAKMP-peer> Parameters for negotiation with an ISAKMP peer
Phase The constant 1, as ISAKMP-peers and IPsecconnections really are handled by the same
code inside isakmpd. - Transport The name of the transport protocol, defaults
- to UDP.
- Port In case of UDP, the UDP port number to send
- to. This is optional, the default value is
500 which is the IANA-registered number for
ISAKMP. - Local-address
- The Local IP-address to use, if we are multihomed, or have aliases.
- Address If existent, the IP-address of the peer.
- Configuration
- The name of the ISAKMP-configuration section
to use. Look at <ISAKMP-configuration>
below. If unspecified, defaults to "Defaultphase-1-configuration". - Authentication
- If existent, authentication data for this
specific peer. In the case of preshared key, this is the key value itself. - ID If existent, the name of the section that
- describes the local client ID that we should
present to our peer. If not present, it
defaults to the address of the local interface we are sending packets over to the
remote daemon. Look at <Phase1-ID> below. - Remote-ID If existent, the name of the section that
- describes the remote client ID we expect the remote daemon to send us. If not present, it defaults to the address of the remote daemon. Look at <Phase1-ID> below.
- Flags A comma-separated list of flags controlling
- the further handling of the ISAKMP SA. Currently there are no specific ISAKMP SA flags defined.
- <Phase1-ID>
ID-type The ID type as given by the RFC specifications. For phase 1 this is currently
IPV4_ADDR, IPV4_ADDR_SUBNET, IPV6_ADDR,
IPV6_ADDR_SUBNET, FQDN, USER_FQDN or KEY_ID.- Address If the ID-type is IPV4_ADDR or IPV6_ADDR,
- this tag should exist and be an IP-address.
- Network If the ID-type is IPV4_ADDR_SUBNET or
- IPV6_ADDR_SUBNET this tag should exist and be a network address.
- Netmask If the ID-type is IPV4_ADDR_SUBNET or
- IPV6_ADDR_SUBNET this tag should exist and be a network subnet mask.
- Name If the ID-type is FQDN, USER_FQDN or KEY_ID,
- this tag should exist and contain a domain
name, user@domain, or other identifying
string respectively. - In the case of KEY_ID, note that the IKE protocol allows any octet sequence to be sent or
received under this payload, potentially
including non-printable ones. isakmpd(8) can only transmit printable KEY_ID payloads, but can receive and process arbitrary KEY_ID payloads. This effectively means that nonprintable KEY_ID remote identities cannot be verified through this means, although it is
still possible to do so through
isakmpd.policy(5). - <ISAKMP-configuration>
DOI The domain of interpretation as given by theRFCs. Normally IPSEC. If unspecified,
defaults to IPSEC.- EXCHANGE_TYPE
- The exchange type as given by the RFCs. For main mode this is ID_PROT and for aggressive mode it is AGGRESSIVE.
- Transforms A list of proposed transforms to use for pro
- tecting the ISAKMP traffic. These are actually names for sections further describing
the transforms. Look at <ISAKMP-transform>
below. - <ISAKMP-transform>
ENCRYPTION_ALGORITHMThe encryption algorithm as the RFCs name it, or ANY to denote that any encryption algorithm proposed will be accepted.- KEY_LENGTH For encryption algorithms with variable key
- length, this is where the offered/accepted
keylengths are described. The value is of
the offer-accept kind described above. - HASH_ALGORITHM
- The hash algorithm as the RFCs name it, or
ANY. - AUTHENTICATION_METHOD
- The authentication method as the RFCs name
it, or ANY. - GROUP_DESCRIPTION
- The group used for Diffie-Hellman exponentiations, or ANY. The names are symbolic, like MODP_768, MODP_1024, EC_155 and EC_185.
- PRF The algorithm to use for the keyed pseudo
- random function (used for key derivation and authentication in phase 1), or ANY.
- Life A list of lifetime descriptions, or ANY. In
- the former case, each element is in itself a
name of the section that defines the lifetime. Look at <Lifetime> below. If it is
set to ANY, then any type of proposed lifetime type and value will be accepted. - <Lifetime>
LIFE_TYPE SECONDS or KILOBYTES depending on the type ofthe duration. Notice that this field may NOT be set to ANY.- LIFE_DURATION
- An offer/accept kind of value, see above.
Can also be set to ANY. - <IPsec-connection>
Phase The constant 2, as ISAKMP-peers and IPsecconnections really are handled by the same
code inside isakmpd.- ISAKMP-peer The name of the ISAKMP-peer which to talk to
- in order to set up this connection. The
value is the name of an <ISAKMP-peer> section. See above. - Configuration
- The name of the IPsec-configuration section
to use. Look at <IPsec-configuration> below. - Local-ID If existent, the name of the section that
- describes the optional local client ID that
we should present to our peer. It is also
used when we act as responders to find out
what <IPsec-connection> we are dealing with. Look at <IPsec-ID> below. - Remote-ID If existent, the name of the section that
- describes the optional remote client ID that
we should present to our peer. It is also
used when we act as responders to find out
what <IPsec-connection> we are dealing with. Look at <IPsec-ID> below. - Flags A comma-separated list of flags controlling
- the further handling of the IPsec SA. Currently only one flag is defined:
- Active-only If this flag is given and this
<IPsec-connection> is part of
the phase 2 connections we
automatically keep up, it will not automatically be used for
accepting connections from the peer. - <IPsec-configuration>
DOI The domain of interpretation as given by theRFCs. Normally IPSEC. If unspecified,
defaults to IPSEC.- EXCHANGE_TYPE
- The exchange type as given by the RFCs. For quick mode this is QUICK_MODE.
- Suites A list of protection suites (bundles of pro
- tocols) usable for protecting the IP traffic.
Each of the list elements is a name of an
<IPsec-suite> section. See below. - <IPsec-suite>
Protocols A list of the protocols included in this protection suite. Each of the list elements is a name of an <IPsec-protocol> section. See
below.- <IPsec-protocol>
PROTOCOL_ID The protocol as given by the RFCs. Acceptable values today are IPSEC_AH and IPSEC_ESP.- Transforms A list of transforms usable for implementing
- the protocol. Each of the list elements is a
name of an <IPsec-transform> section. See
below. - ReplayWindow The size of the window used for replay pro
- tection. This is normally left alone. Look at the ESP and AH RFCs for a better description.
- <IPsec-transform>
TRANSFORM_ID The transform ID as given by the RFCs.- ENCAPSULATION_MODE
The encapsulation mode as given by the RFCs. This means TRANSPORT or TUNNEL.
- AUTHENTICATION_ALGORITHM
- The optional authentication algorithm in the case of this being an ESP transform.
- GROUP_DESCRIPTION
- An optional (provides PFS if present) DiffieHellman group description. The values are
the same as GROUP_DESCRIPTION's in <ISAKMPtransform> sections shown above. - Life List of lifetimes, each element is a <Life
- time> section name.
- <IPsec-ID>
ID-type The ID type as given by the RFCs. For IPsecthis is currently IPV4_ADDR, IPV6_ADDR,
IPV4_ADDR_SUBNET or IPV6_ADDR_SUBNET.- Address If the ID-type is IPV4_ADDR or IPV6_ADDR this
- tag should exist and be an IP-address.
- Network If the ID-type is IPV4_ADDR_SUBNET or
- IPV6_ADDR_SUBNET this tag should exist and be a network address.
- Netmask If the ID-type is IPV4_ADDR_SUBNET or
- IPV6_ADDR_SUBNET this tag should exist and be a network subnet mask.
- Protocol If the ID-type is IPV4_ADDR,
- IPV4_ADDR_SUBNET, IPV6_ADDR or
IPV6_ADDR_SUBNET this tag indicates what
transport protocol should be transmitted over the SA. If left unspecified, all transport
protocols between the two address (ranges)
will be sent (or permitted) over that SA. - Port If the ID-type is IPV4_ADDR,
- IPV4_ADDR_SUBNET, IPV6_ADDR or
IPV6_ADDR_SUBNET this tag indicates what
source or destination port is allowed to be
transported over the SA (depending on whether this is a local or remote ID). If left
unspecified, all ports of the given transport protocol will be transmitted (or permitted)
over the SA. The Protocol tag must be specified in conjunction with this tag. - Other sections
- <IKECFG-ID> Parameters to use with IKE mode-config. One ID per peer.
An IKECFG-ID is written as [<ID-type>/<name>]. The following ID types are supported:IPv4 [ipv4/A.B.C.D]IPv6 [ipv6/abcd:abcd::ab:cd]FQDN [fqdn/foo.bar.org]UFQDN [ufqdn/user@foo.bar.org]ASN1_DN [asn1_dn//C=aa/O=cc/...] (Note the doubleslashes as the DN itself starts with a '/'.) - Each section specifies what configuration values to return to the peer requesting IKE mode-config. Currently supported values are:
- Address The peer's network address.
- Netmask The peer's netmask.
- Nameserver The IP address of a DNS nameserver.
- WINS-server The IP address of a WINS server.
- <Initiator-ID>
During phase 1 negotiation isakmpd looks for a pre-shared key in the <ISAKMP-peer> section. If no Authentication
data is specified in that section, and isakmpd is not the initiator, it looks for Authentication data in a section
named after the initiator's phase 1 ID. This allows mobile users with dynamic IP addresses to have different shared
secrets.- This only works for aggressive mode because in main mode
the remote initiator ID would not yet be known. - The name of the <Initiator-ID> section depends on the ID
type sent by the initiator. Currently this can be: - IPv4 [A.B.C.D]
- IPv6 [abcd:abcd::ab:cd]
- FQDN [foo.bar.org]
- UFQDN [user@foo.bar.org]
FILES
/etc/isakmpd/isakmpd.conf The default isakmpd configuration file.
- /usr/share/ipsec/isakmpd/ A directory containing some sample isakmpd
- configuration files.
EXAMPLES
An example of a configuration file:
# A configuration sample for the isakmpd ISAKMP/Oakley (aka IKE) daemon.
[General]
Listen-on= 10.1.0.2
# Incoming phase 1 negotiations are multiplexed on the source IP address
[Phase 1]
10.1.0.1= ISAKMP-peer-west
# These connections are walked over after config file parsing and told
# to the application layer so that it will inform us when traffic wants to
# pass over them.
This means we can do on-demand keying.
[Phase 2]
Connections= IPsec-east-west
# Default values are commented out.
[ISAKMP-peer-west]
Phase= 1
#Transport= udp
Local-address= 10.1.0.2
Address= 10.1.0.1
#Port= isakmp
#Port= 500
#Configuration= Default-phase-1-configuration
Authentication= mekmitasdigoat
#Flags=
[IPsec-east-west]
Phase= 2
ISAKMP-peer= ISAKMP-peer-west
Configuration= Default-quick-mode
Local-ID= Net-east
Remote-ID= Net-west
#Flags=
[Net-west]
ID-type= IPV4_ADDR_SUBNET
Network= 192.168.1.0
Netmask= 255.255.255.0
[Net-east]
ID-type= IPV4_ADDR_SUBNET
Network= 192.168.2.0
Netmask= 255.255.255.0
# Quick mode descriptions
[Default-quick-mode]
EXCHANGE_TYPE= QUICK_MODE
Suites= QM-ESP-3DES-SHA-PFS-SUITE,QM-ESP-AES-SHA-PFS-SUITE
# Data for an IKE mode-config peer
[asn1_dn//C=SE/L=SomeCity/O=SomeCompany/CN=SomePeer.company.com]
Address= 192.168.1.123
Netmask= 255.255.255.0
Nameserver= 192.168.1.10
WINS-server= 192.168.1.11
# pre-shared key based on initiator's phase 1 ID
[foo.bar.org]
Authentication= mekmitasdigoat
#
# #####################################################################
# All configuration data below this point is not required as the example
# uses the predefined Main Mode transform and Quick Mode suite names.
# It is included here for completeness. Note the default values for the
# [General] and [X509-certificates] sections just below.
# #####################################################################
#
[General]
Policy-file= /etc/isakmpd/isakmpd.policy
Retransmits= 3
Exchange-max-time= 120
# KeyNote credential storage
[KeyNote]
Credential-directory= /etc/isakmpd/keynote/
# Certificates stored in PEM format
[X509-certificates]
CA-directory= /etc/isakmpd/ca/
Cert-directory= /etc/isakmpd/certs/
CRL-directory= /etc/isakmpd/crls/
Private-key= /etc/isakmpd/private/local.key
# Default phase 1 description (Main Mode)
[Default-phase-1-configuration]
EXCHANGE_TYPE= ID_PROT
Transforms= 3DES-SHA
# Main mode transforms
######################
# DES
[DES-MD5]
ENCRYPTION_ALGORITHM= DES_CBC
HASH_ALGORITHM= MD5
AUTHENTICATION_METHOD= PRE_SHARED
GROUP_DESCRIPTION= MODP_1024
Life= Default-phase-1-lifetime
[DES-SHA]
ENCRYPTION_ALGORITHM= DES_CBC
HASH_ALGORITHM= SHA
AUTHENTICATION_METHOD= PRE_SHARED
GROUP_DESCRIPTION= MODP_1024
Life= Default-phase-1-lifetime
# 3DES
[3DES-SHA]
ENCRYPTION_ALGORITHM= 3DES_CBC
HASH_ALGORITHM= SHA
AUTHENTICATION_METHOD= PRE_SHARED
GROUP_DESCRIPTION= MODP_1024
Life= Default-phase-1-lifetime
# Blowfish
[BLF-SHA]
ENCRYPTION_ALGORITHM= BLOWFISH_CBC
KEY_LENGTH= 128,96:192
HASH_ALGORITHM= SHA
AUTHENTICATION_METHOD= PRE_SHARED
GROUP_DESCRIPTION= MODP_1024
Life= Default-phase-1-lifetime
# Blowfish, using DH group 4 (non-default)
[BLF-SHA-EC185]
ENCRYPTION_ALGORITHM= BLOWFISH_CBC
KEY_LENGTH= 128,96:192
HASH_ALGORITHM= SHA
AUTHENTICATION_METHOD= PRE_SHARED
GROUP_DESCRIPTION= EC2N_185
Life= Default-phase-1-lifetime
# Quick mode protection suites
##############################
# DES
[QM-ESP-DES-SUITE]
Protocols= QM-ESP-DES
[QM-ESP-DES-PFS-SUITE]
Protocols= QM-ESP-DES-PFS
[QM-ESP-DES-MD5-SUITE]
Protocols= QM-ESP-DES-MD5
[QM-ESP-DES-MD5-PFS-SUITE]
Protocols= QM-ESP-DES-MD5-PFS
[QM-ESP-DES-SHA-SUITE]
Protocols= QM-ESP-DES-SHA
[QM-ESP-DES-SHA-PFS-SUITE]
Protocols= QM-ESP-DES-SHA-PFS
# 3DES
[QM-ESP-3DES-SHA-SUITE]
Protocols= QM-ESP-3DES-SHA
[QM-ESP-3DES-SHA-PFS-SUITE]
Protocols= QM-ESP-3DES-SHA-PFS
# AES
[QM-ESP-AES-SHA-SUITE]
Protocols= QM-ESP-AES-SHA
[QM-ESP-AES-SHA-PFS-SUITE]
Protocols= QM-ESP-AES-SHA-PFS
# AH
[QM-AH-MD5-SUITE]
Protocols= QM-AH-MD5
[QM-AH-MD5-PFS-SUITE]
Protocols= QM-AH-MD5-PFS
# AH + ESP (non-default)
[QM-AH-MD5-ESP-DES-SUITE]
Protocols= QM-AH-MD5,QM-ESP-DES
[QM-AH-MD5-ESP-DES-MD5-SUITE]
Protocols= QM-AH-MD5,QM-ESP-DES-MD5
[QM-ESP-DES-MD5-AH-MD5-SUITE]
Protocols= QM-ESP-DES-MD5,QM-AH-MD5
# Quick mode protocols
# DES
[QM-ESP-DES]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-DES-XF
[QM-ESP-DES-MD5]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-DES-MD5-XF
[QM-ESP-DES-MD5-PFS]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-DES-MD5-PFS-XF
[QM-ESP-DES-SHA]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-DES-SHA-XF
# 3DES
[QM-ESP-3DES-SHA]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-3DES-SHA-XF
[QM-ESP-3DES-SHA-PFS]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-3DES-SHA-PFS-XF
[QM-ESP-3DES-SHA-TRP]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-3DES-SHA-TRP-XF
# AES
[QM-ESP-AES-SHA]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-AES-SHA-XF
[QM-ESP-AES-SHA-PFS]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-AES-SHA-PFS-XF
[QM-ESP-AES-SHA-TRP]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-AES-SHA-TRP-XF
# AH MD5
[QM-AH-MD5]
PROTOCOL_ID= IPSEC_AH
Transforms= QM-AH-MD5-XF
[QM-AH-MD5-PFS]
PROTOCOL_ID= IPSEC_AH
Transforms= QM-AH-MD5-PFS-XF
# Quick mode transforms
# ESP DES+MD5
[QM-ESP-DES-XF]
TRANSFORM_ID= DES
ENCAPSULATION_MODE= TUNNEL
Life= Default-phase-2-lifetime
[QM-ESP-DES-MD5-XF]
TRANSFORM_ID= DES
ENCAPSULATION_MODE= TUNNEL
AUTHENTICATION_ALGORITHM= HMAC_MD5
Life= Default-phase-2-lifetime
[QM-ESP-DES-MD5-PFS-XF]
TRANSFORM_ID= DES
ENCAPSULATION_MODE= TUNNEL
GROUP_DESCRIPTION= MODP_1024
AUTHENTICATION_ALGORITHM= HMAC_MD5
Life= Default-phase-2-lifetime
[QM-ESP-DES-SHA-XF]
TRANSFORM_ID= DES
ENCAPSULATION_MODE= TUNNEL
AUTHENTICATION_ALGORITHM= HMAC_SHA
Life= Default-phase-2-lifetime
# 3DES
[QM-ESP-3DES-SHA-XF]
TRANSFORM_ID= 3DES
ENCAPSULATION_MODE= TUNNEL
AUTHENTICATION_ALGORITHM= HMAC_SHA
Life= Default-phase-2-lifetime
[QM-ESP-3DES-SHA-PFS-XF]
TRANSFORM_ID= 3DES
ENCAPSULATION_MODE= TUNNEL
AUTHENTICATION_ALGORITHM= HMAC_SHA
GROUP_DESCRIPTION= MODP_1024
Life= Default-phase-2-lifetime
[QM-ESP-3DES-SHA-TRP-XF]
TRANSFORM_ID= 3DES
ENCAPSULATION_MODE= TRANSPORT
AUTHENTICATION_ALGORITHM= HMAC_SHA
Life= Default-phase-2-lifetime
# AES
[QM-ESP-AES-SHA-XF]
TRANSFORM_ID= AES
ENCAPSULATION_MODE= TUNNEL
AUTHENTICATION_ALGORITHM= HMAC_SHA
Life= Default-phase-2-lifetime
[QM-ESP-AES-SHA-PFS-XF]
TRANSFORM_ID= AES
ENCAPSULATION_MODE= TUNNEL
AUTHENTICATION_ALGORITHM= HMAC_SHA
GROUP_DESCRIPTION= MODP_1024
Life= Default-phase-2-lifetime
[QM-ESP-AES-SHA-TRP-XF]
TRANSFORM_ID= AES
ENCAPSULATION_MODE= TRANSPORT
AUTHENTICATION_ALGORITHM= HMAC_SHA
Life= Default-phase-2-lifetime
# AH
[QM-AH-MD5-XF]
TRANSFORM_ID= MD5
ENCAPSULATION_MODE= TUNNEL
AUTHENTICATION_ALGORITHM= HMAC_MD5
Life= Default-phase-2-lifetime
[QM-AH-MD5-PFS-XF]
TRANSFORM_ID= MD5
ENCAPSULATION_MODE= TUNNEL
GROUP_DESCRIPTION= MODP_1024
Life= Default-phase-2-lifetime
[Sample-Life-Time]
LIFE_TYPE= SECONDS
LIFE_DURATION= 3600,1800:7200
[Sample-Life-Volume]
LIFE_TYPE= KILOBYTES
LIFE_DURATION= 1000,768:1536
SEE ALSO
keynote(1), ipsec(4), keynote(4), isakmpd.policy(5), isakmpd(8)
BUGS
- The RFCs do not permit differing DH groups in the same proposal for
aggressive and quick mode exchanges. Mixing both PFS and non-PFS suites in a quick mode proposal is not possible, as PFS implies using a DH
group.