git(7)
NAME
git - the stupid content tracker
SYNOPSIS
git [--version] [--exec-path[=GIT_EXEC_PATH]]
[-p|--paginate]
[--bare] [--git-dir=GIT_DIR] [--help] COMMAND
[ARGS]
DESCRIPTION
- Git is a fast, scalable, distributed revision control sys
- tem with an unusually rich command set that provides both high
- level operations and full access to internals.
- See this [1]tutorial to get started, then see [2]Everyday
- Git for a useful minimum set of commands, and "man git-command
- name" for documentation of each command. CVS users may also want
- to read [3]CVS migration.
- The COMMAND is either a name of a Git command (see below)
- or an alias as defined in the configuration file (see
- git-repo-config(1)).
OPTIONS
- --version
- Prints the git suite version that the git program came
- from.
- --help
- Prints the synopsis and a list of the most commonly
- used commands. If a git command is named this option will bring
- up the man-page for that command. If the option --all or -a is
- given then all available commands are printed.
- --exec-path
- Path to wherever your core git programs are installed.
- This can also be controlled by setting the GIT_EXEC_PATH environ
- ment variable. If no path is given git will print the current
- setting and then exit.
- -p|--paginate
- Pipe all output into less (or if set, $PAGER).
- --git-dir=<path>
- Set the path to the repository. This can also be con
- trolled by setting the GIT_DIR environment variable.
- --bare
- Same as --git-dir=pwd.
FURTHER DOCUMENTATION
- See the references above to get started using git. The
- following is probably more detail than necessary for a first-time
- user.
- The Discussion section below and the [4]Core tutorial both
- provide introductions to the underlying git architecture.
- See also the [5]howto documents for some useful examples.
GIT COMMANDS
- We divide git into high level ("porcelain") commands and
- low level ("plumbing") commands.
HIGH-LEVEL COMMANDS (PORCELAIN)
- We separate the porcelain commands into the main commands
- and some ancillary user utilities.
- Main porcelain commands
- git-add(1)
Add paths to the index.
- git-am(1)
Apply patches from a mailbox, but cooler.
- git-applymbox(1)
Apply patches from a mailbox, original version by Linus.
- git-archive(1)
Creates an archive of files from a named tree.
- git-bisect(1)
Find the change that introduced a bug by binary search.
- git-branch(1)
Create and Show branches.
- git-checkout(1)
Checkout and switch to a branch.
- git-cherry-pick(1)
Cherry-pick the effect of an existing commit.
- git-clean(1)
Remove untracked files from the working tree.
- git-clone(1)
Clones a repository into a new directory.
- git-commit(1)
Record changes to the repository.
- git-diff(1)
Show changes between commits, commit and working tree,etc.
- git-fetch(1)
Download from a remote repository via various protocols.
- git-format-patch(1)
Prepare patches for e-mail submission.
- git-grep(1)
Print lines matching a pattern.
- gitk(1)
The git repository browser.
- git-log(1)
Shows commit logs.
- git-ls-remote(1)
Shows references in a remote or local repository.
- git-merge(1)
Grand unified merge driver.
- git-mv(1)
Move or rename a file, a directory, or a symlink.
- git-pack-refs(1)
Pack heads and tags for efficient repository access.
- git-pull(1)
Fetch from and merge with a remote repository or a local branch.
- git-push(1)
Update remote refs along with associated objects.
- git-rebase(1)
Rebase local commits to the updated upstream head.
- git-repack(1)
Pack unpacked objects in a repository.
- git-rerere(1)
Reuse recorded resolution of conflicted merges.
- git-reset(1)
Reset current HEAD to the specified state.
- git-resolve(1)
Merge two commits.
- git-revert(1)
Revert an existing commit.
- git-rm(1)
Remove files from the working tree and from the index.
- git-shortlog(1)
Summarizes git log output.
- git-show(1)
Show one commit log and its diff.
- git-show-branch(1)
Show branches and their commits.
- git-status(1)
Shows the working tree status.
- git-verify-tag(1)
Check the GPG signature of tag.
- git-whatchanged(1)
Shows commit logs and differences they introduce.
- Ancillary Commands
- Manipulators:
- git-applypatch(1)
Apply one patch extracted from an e-mail.
- git-archimport(1)
Import an arch repository into git.
- git-convert-objects(1)
Converts old-style git repository.
- git-cvsimport(1)
Salvage your data out of another SCM people love tohate.
- git-cvsexportcommit(1)
Export a single commit to a CVS checkout.
- git-cvsserver(1)
A CVS server emulator for git.
- git-lost-found(1)
Recover lost refs that luckily have not yet beenpruned.
- git-merge-one-file(1)
The standard helper program to use with git-merge-index.
- git-prune(1)
Prunes all unreachable objects from the objectdatabase.
- git-quiltimport(1)
Applies a quilt patchset onto the current branch.
- git-relink(1)
Hardlink common objects in local repositories.
- git-svn(1)
Bidirectional operation between a single Subversionbranch and git.
- git-svnimport(1)
Import a SVN repository into git.
- git-sh-setup(1)
Common git shell script setup code.
- git-symbolic-ref(1)
Read and modify symbolic refs.
- git-tag(1)
An example script to create a tag object signed withGPG.
- git-update-ref(1)
Update the object name stored in a ref safely.
- Interrogators:
- git-annotate(1)
Annotate file lines with commit info.
- git-blame(1)
Find out where each line in a file came from.
- git-check-ref-format(1)
Make sure ref name is well formed.
- git-cherry(1)
Find commits not merged upstream.
- git-count-objects(1)
Count unpacked number of objects and their disk consumption.
- git-daemon(1)
A really simple server for git repositories.
- git-fmt-merge-msg(1)
Produce a merge commit message.
- git-get-tar-commit-id(1)
Extract commit ID from an archive created using gittar-tree.
- git-imap-send(1)
Dump a mailbox from stdin into an imap folder.
- git-instaweb(1)
Instantly browse your working repository in gitweb.
- git-mailinfo(1)
Extracts patch and authorship information from a singlee-mail message, optionally transliterating the commit message into utf-8.
- git-mailsplit(1)
A stupid program to split UNIX mbox format mailbox intoindividual pieces of e-mail.
- git-merge-tree(1)
Show three-way merge without touching index.
- git-patch-id(1)
Compute unique ID for a patch.
- git-parse-remote(1)
Routines to help parsing $GIT_DIR/remotes/ files.
- git-request-pull(1)
git-request-pull.
- git-rev-parse(1)
Pick out and massage parameters.
- git-runstatus(1)
A helper for git-status and git-commit.
- git-send-email(1)
Send patch e-mails out of "format-patch --mbox" output.
- git-symbolic-ref(1)
Read and modify symbolic refs.
- git-stripspace(1)
Filter out empty lines.
LOW-LEVEL COMMANDS (PLUMBING)
- Although git includes its own porcelain layer, its low
- level commands are sufficient to support development of alterna
- tive porcelains. Developers of such porcelains might start by
- reading about git-update-index(1) and git-read-tree(1).
- We divide the low-level commands into commands that manip
- ulate objects (in the repository, index, and working tree), com
- mands that interrogate and compare objects, and commands that
- move objects and references between repositories.
- Manipulation commands
- git-apply(1)
Reads a "diff -up1" or git generated patch file and applies it to the working tree.
- git-checkout-index(1)
Copy files from the index to the working tree.
- git-commit-tree(1)
Creates a new commit object.
- git-hash-object(1)
Computes the object ID from a file.
- git-index-pack(1)
Build pack idx file for an existing packed archive.
- git-init-db(1)
Creates an empty git object database, or reinitializean existing one.
- git-merge-index(1)
Runs a merge for files needing merging.
- git-mktag(1)
Creates a tag object.
- git-mktree(1)
Build a tree-object from ls-tree formatted text.
- git-pack-objects(1)
Creates a packed archive of objects.
- git-prune-packed(1)
Remove extra objects that are already in pack files.
- git-read-tree(1)
Reads tree information into the index.
- git-repo-config(1)
Get and set options in .git/config.
- git-unpack-objects(1)
Unpacks objects out of a packed archive.
- git-update-index(1)
Registers files in the working tree to the index.
- git-write-tree(1)
Creates a tree from the index.
- Interrogation commands
- git-cat-file(1)
Provide content or type/size information for repositoryobjects.
- git-describe(1)
Show the most recent tag that is reachable from a commit.
- git-diff-index(1)
Compares content and mode of blobs between the indexand repository.
- git-diff-files(1)
Compares files in the working tree and the index.
- git-diff-stages(1)
Compares two "merge stages" in the index.
- git-diff-tree(1)
Compares the content and mode of blobs found via twotree objects.
- git-for-each-ref(1)
Output information on each ref.
- git-fsck-objects(1)
Verifies the connectivity and validity of the objectsin the database.
- git-ls-files(1)
Information about files in the index and the workingtree.
- git-ls-tree(1)
Displays a tree object in human readable form.
- git-merge-base(1)
Finds as good common ancestors as possible for a merge.
- git-name-rev(1)
Find symbolic names for given revs.
- git-pack-redundant(1)
Find redundant pack files.
- git-rev-list(1)
Lists commit objects in reverse chronological order.
- git-show-index(1)
Displays contents of a pack idx file.
- git-show-ref(1)
List references in a local repository.
- git-tar-tree(1)
Creates a tar archive of the files in the named treeobject.
- git-unpack-file(1)
Creates a temporary file with a blob's contents.
- git-var(1)
Displays a git logical variable.
- git-verify-pack(1)
Validates packed git archive files.
- In general, the interrogate commands do not touch the
- files in the working tree.
- Synching repositories
- git-fetch-pack(1)
Updates from a remote repository (engine for ssh andlocal transport).
- git-http-fetch(1)
Downloads a remote git repository via HTTP by walkingcommit chain.
- git-local-fetch(1)
Duplicates another git repository on a local system bywalking commit chain.
- git-peek-remote(1)
Lists references on a remote repository using uploadpack protocol (engine for ssh and local transport).
- git-receive-pack(1)
Invoked by git-send-pack to receive what is pushed toit.
- git-send-pack(1)
Pushes to a remote repository, intelligently.
- git-http-push(1)
Push missing objects using HTTP/DAV.
- git-shell(1)
Restricted shell for GIT-only SSH access.
- git-ssh-fetch(1)
Pulls from a remote repository over ssh connection bywalking commit chain.
- git-ssh-upload(1)
Helper "server-side" program used by git-ssh-fetch.
- git-update-server-info(1)
Updates auxiliary information on a dumb server to helpclients discover references and packs on it.
- git-upload-archive(1)
Invoked by git-archive to send a generated archive.
- git-upload-pack(1)
Invoked by git-fetch-pack to push what are asked for.
CONFIGURATION MECHANISM
- Starting from 0.99.9 (actually mid 0.99.8.GIT), .git/con
- fig file is used to hold per-repository configuration options. It
- is a simple text file modeled after .ini format familiar to some
- people. Here is an example:
#
# A '#' or ';' character indicates a comment.
#- ; core variables
[core]; Don't trust file modes
filemode = false - ; user identity
[user] - name = "Junio C Hamano"
email = "junkio@twinsun.com" - Various commands read from the configuration file and ad
- just their operation accordingly.
IDENTIFIER TERMINOLOGY
- <object>
- Indicates the object name for any type of object.
- <blob>
- Indicates a blob object name.
- <tree>
- Indicates a tree object name.
- <commit>
- Indicates a commit object name.
- <tree-ish>
- Indicates a tree, commit or tag object name. A command
- that takes a <tree-ish> argument ultimately wants to operate on a
- <tree> object but automatically dereferences <commit> and <tag>
- objects that point at a <tree>.
- <type>
- Indicates that an object type is required. Currently
- one of: blob, tree, commit, or tag.
- <file>
- Indicates a filename - almost always relative to the
- root of the tree structure GIT_INDEX_FILE describes.
SYMBOLIC IDENTIFIERS
- Any git command accepting any <object> can also use the
- following symbolic notation:
- HEAD
- indicates the head of the current branch (i.e. the con
- tents of $GIT_DIR/HEAD).
- <tag>
- a valid tag name (i.e. the contents of
- $GIT_DIR/refs/tags/<tag>).
- <head>
- a valid head name (i.e. the contents of
- $GIT_DIR/refs/heads/<head>).
- For a more complete list of ways to spell object names,
- see "SPECIFYING REVISIONS" section in git-rev-parse(1).
FILE/DIRECTORY STRUCTURE
Please see [6]repository layout document.
Read [7]hooks for more details about each hook.
- Higher level SCMs may provide and manage additional infor
- mation in the $GIT_DIR.
TERMINOLOGY
Please see [8]glossary document.
ENVIRONMENT VARIABLES
- Various git commands use the following environment vari
- ables:
- The git Repository
- These environment variables apply to all core git com
- mands. Nb: it is worth noting that they may be used/overridden by
- SCMS sitting above git so take care if using Cogito etc.
- GIT_INDEX_FILE
This environment allows the specification of an alternate index file. If not specified, the default of $GIT_DIR/indexis used.
- GIT_OBJECT_DIRECTORY
If the object storage directory is specified via thisenvironment variable then the sha1 directories are created underneath - otherwise the default $GIT_DIR/objects directory is used.
- GIT_ALTERNATE_OBJECT_DIRECTORIES
Due to the immutable nature of git objects, old objectscan be archived into shared, read-only directories. This variablespecifies a ":" separated list of git object directories whichcan be used to search for git objects. New objects will not bewritten to these directories.
- GIT_DIR
If the GIT_DIR environment variable is set then itspecifies a path to use instead of the default .git for the baseof the repository.
- git Commits
- GIT_AUTHOR_NAME, GIT_AUTHOR_EMAIL, GIT_AUTHOR_DATE,
- GIT_COMMITTER_NAME, GIT_COMMITTER_EMAIL
- git Diffs
- GIT_DIFF_OPTS, GIT_EXTERNAL_DIFF
see the "generating patches" section in :
- other
- GIT_PAGER
This environment variable overrides $PAGER.
- GIT_TRACE
If this variable is set to "1", "2" or "true" (comparison is case insensitive), git will print trace: messages onstderr telling about alias expansion, built-in command executionand external command execution. If this variable is set to an integer value greater than 1 and lower than 10 (strictly) then gitwill interpret this value as an open file descriptor and will tryto write the trace messages into this file descriptor. Alternatively, if this variable is set to an absolute path (startingwith a / character), git will interpret this as a file path andwill try to write the trace messages into it.
DISCUSSION
"git" can mean anything, depending on your mood.
- · random three-letter combination that is pronounceable,
- and not actually used by any common UNIX command. The fact that
- it is a mispronunciation of "get" may or may not be relevant.
- · stupid. contemptible and despicable. simple. Take your
- pick from the dictionary of slang.
- · "global information tracker": you're in a good mood,
- and it actually works for you. Angels sing, and a light suddenly
- fills the room.
- · "goddamn idiotic truckload of sh*t": when it breaks
This is a stupid (but extremely fast) directory content- manager. It doesn't do a whole lot, but what it does do is track
- directory contents efficiently.
- There are two object abstractions: the "object
- database", and the "current directory cache" aka "index".
- The Object Database
- The object database is literally just a content-address
- able collection of objects. All objects are named by their con
- tent, which is approximated by the SHA1 hash of the object it
- self. Objects may refer to other objects (by referencing their
- SHA1 hash), and so you can build up a hierarchy of objects.
- All objects have a statically determined "type" aka "tag",
- which is determined at object creation time, and which identifies
- the format of the object (i.e. how it is used, and how it can re
- fer to other objects). There are currently four different object
- types: "blob", "tree", "commit" and "tag".
- A "blob" object cannot refer to any other object, and is,
- like the type implies, a pure storage object containing some user
- data. It is used to actually store the file data, i.e. a blob ob
- ject is associated with some particular version of some file.
- A "tree" object is an object that ties one or more "blob"
- objects into a directory structure. In addition, a tree object
- can refer to other tree objects, thus creating a directory hier
- archy.
- A "commit" object ties such directory hierarchies together
- into a DAG of revisions - each "commit" is associated with exact
- ly one tree (the directory hierarchy at the time of the commit).
- In addition, a "commit" refers to one or more "parent" commit ob
- jects that describe the history of how we arrived at that direc
- tory hierarchy.
- As a special case, a commit object with no parents is
- called the "root" object, and is the point of an initial project
- commit. Each project must have at least one root, and while you
- can tie several different root objects together into one project
- by creating a commit object which has two or more separate roots
- as its ultimate parents, that's probably just going to confuse
- people. So aim for the notion of "one root object per project",
- even if git itself does not enforce that.
- A "tag" object symbolically identifies and can be used to
- sign other objects. It contains the identifier and type of anoth
- er object, a symbolic name (of course!) and, optionally, a signa
- ture.
- Regardless of object type, all objects share the following
- characteristics: they are all deflated with zlib, and have a
- header that not only specifies their type, but also provides size
- information about the data in the object. It's worth noting that
- the SHA1 hash that is used to name the object is the hash of the
- original data plus this header, so sha1sum file does not match
- the object name for file. (Historical note: in the dawn of the
- age of git the hash was the sha1 of the compressed object.)
- As a result, the general consistency of an object can al
- ways be tested independently of the contents or the type of the
- object: all objects can be validated by verifying that (a) their
- hashes match the content of the file and (b) the object success
- fully inflates to a stream of bytes that forms a sequence of
- <ascii type without space> + <space> + <ascii decimal size> +
- <byte > + <binary object data>.
- The structured objects can further have their structure
- and connectivity to other objects verified. This is generally
- done with the git-fsck-objects program, which generates a full
- dependency graph of all objects, and verifies their internal con
- sistency (in addition to just verifying their superficial consis
- tency through the hash).
- The object types in some more detail:
- Blob Object
- A "blob" object is nothing but a binary blob of data, and
- doesn't refer to anything else. There is no signature or any oth
- er verification of the data, so while the object is consistent
- (it is indexed by its sha1 hash, so the data itself is certainly
- correct), it has absolutely no other attributes. No name associa
- tions, no permissions. It is purely a blob of data (i.e. normally
- "file contents").
- In particular, since the blob is entirely defined by its
- data, if two files in a directory tree (or in multiple different
- versions of the repository) have the same contents, they will
- share the same blob object. The object is totally independent of
- its location in the directory tree, and renaming a file does not
- change the object that file is associated with in any way.
- A blob is typically created when git-update-index(1) is
- run, and its data can be accessed by git-cat-file(1).
- Tree Object
- The next hierarchical object type is the "tree" object. A
- tree object is a list of mode/name/blob data, sorted by name. Al
- ternatively, the mode data may specify a directory mode, in which
- case instead of naming a blob, that name is associated with an
- other TREE object.
- Like the "blob" object, a tree object is uniquely deter
- mined by the set contents, and so two separate but identical
- trees will always share the exact same object. This is true at
- all levels, i.e. it's true for a "leaf" tree (which does not re
- fer to any other trees, only blobs) as well as for a whole subdi
- rectory.
- For that reason a "tree" object is just a pure data ab
- straction: it has no history, no signatures, no verification of
- validity, except that since the contents are again protected by
- the hash itself, we can trust that the tree is immutable and its
- contents never change.
- So you can trust the contents of a tree to be valid, the
- same way you can trust the contents of a blob, but you don't know
- where those contents came from.
- Side note on trees: since a "tree" object is a sorted list
- of "filename+content", you can create a diff between two trees
- without actually having to unpack two trees. Just ignore all com
- mon parts, and your diff will look right. In other words, you can
- effectively (and efficiently) tell the difference between any two
- random trees by O(n) where "n" is the size of the difference,
- rather than the size of the tree.
- Side note 2 on trees: since the name of a "blob" depends
- entirely and exclusively on its contents (i.e. there are no names
- or permissions involved), you can see trivial renames or permis
- sion changes by noticing that the blob stayed the same. However,
- renames with data changes need a smarter "diff" implementation.
- A tree is created with git-write-tree(1) and its data can
- be accessed by git-ls-tree(1). Two trees can be compared with
- git-diff-tree(1).
- Commit Object
- The "commit" object is an object that introduces the no
- tion of history into the picture. In contrast to the other ob
- jects, it doesn't just describe the physical state of a tree, it
- describes how we got there, and why.
- A "commit" is defined by the tree-object that it results
- in, the parent commits (zero, one or more) that led up to that
- point, and a comment on what happened. Again, a commit is not
- trusted per se: the contents are well-defined and "safe" due to
- the cryptographically strong signatures at all levels, but there
- is no reason to believe that the tree is "good" or that the merge
- information makes sense. The parents do not have to actually have
- any relationship with the result, for example.
- Note on commits: unlike real SCM's, commits do not contain
- rename information or file mode change information. All of that
- is implicit in the trees involved (the result tree, and the re
- sult trees of the parents), and describing that makes no sense in
- this idiotic file manager.
- A commit is created with git-commit-tree(1) and its data
- can be accessed by git-cat-file(1).
- Trust
- An aside on the notion of "trust". Trust is really outside
- the scope of "git", but it's worth noting a few things. First
- off, since everything is hashed with SHA1, you can trust that an
- object is intact and has not been messed with by external
- sources. So the name of an object uniquely identifies a known
- state - just not a state that you may want to trust.
- Furthermore, since the SHA1 signature of a commit refers
- to the SHA1 signatures of the tree it is associated with and the
- signatures of the parent, a single named commit specifies unique
- ly a whole set of history, with full contents. You can't later
- fake any step of the way once you have the name of a commit.
- So to introduce some real trust in the system, the only
- thing you need to do is to digitally sign just one special note,
- which includes the name of a top-level commit. Your digital sig
- nature shows others that you trust that commit, and the im
- mutability of the history of commits tells others that they can
- trust the whole history.
- In other words, you can easily validate a whole archive by
- just sending out a single email that tells the people the name
- (SHA1 hash) of the top commit, and digitally sign that email us
- ing something like GPG/PGP.
- To assist in this, git also provides the tag object...
- Tag Object
- Git provides the "tag" object to simplify creating, manag
- ing and exchanging symbolic and signed tokens. The "tag" object
- at its simplest simply symbolically identifies another object by
- containing the sha1, type and symbolic name.
- However it can optionally contain additional signature in
- formation (which git doesn't care about as long as there's less
- than 8k of it). This can then be verified externally to git.
- Note that despite the tag features, "git" itself only han
- dles content integrity; the trust framework (and signature provi
- sion and verification) has to come from outside.
- A tag is created with git-mktag(1), its data can be ac
- cessed by git-cat-file(1), and the signature can be verified by
- git-verify-tag(1).
THE INDEX" AKA CURRENT DIRECTORY CACHE"
- The index is a simple binary file, which contains an effi
- cient representation of a virtual directory content at some ran
- dom time. It does so by a simple array that associates a set of
- names, dates, permissions and content (aka "blob") objects to
- gether. The cache is always kept ordered by name, and names are
- unique (with a few very specific rules) at any point in time, but
- the cache has no long-term meaning, and can be partially updated
- at any time.
- In particular, the index certainly does not need to be
- consistent with the current directory contents (in fact, most op
- erations will depend on different ways to make the index not be
- consistent with the directory hierarchy), but it has three very
- important attributes:
- (a) it can re-generate the full state it caches (not just
- the directory structure: it contains pointers to the "blob"
- objects so that it can regenerate the data too)
- As a special case, there is a clear and unambiguous one
- way mapping from a current directory cache to a "tree object",
- which can be efficiently created from just the current directory
- cache without actually looking at any other data. So a directory
- cache at any one time uniquely specifies one and only one "tree"
- object (but has additional data to make it easy to match up that
- tree object with what has happened in the directory)
- (b) it has efficient methods for finding inconsistencies
- between that cached state ("tree object waiting to be
- instantiated") and the current state.
- (c) it can additionally efficiently represent information
- about merge conflicts between different tree objects, allowing
- each pathname to be associated with sufficient information about
- the trees involved that you can create a three-way merge between
- them.
- Those are the three ONLY things that the directory cache
- does. It's a cache, and the normal operation is to re-generate it
- completely from a known tree object, or update/compare it with a
- live tree that is being developed. If you blow the directory
- cache away entirely, you generally haven't lost any information
- as long as you have the name of the tree that it described.
- At the same time, the index is at the same time also the
- staging area for creating new trees, and creating a new tree al
- ways involves a controlled modification of the index file. In
- particular, the index file can have the representation of an in
- termediate tree that has not yet been instantiated. So the index
- can be thought of as a write-back cache, which can contain dirty
- information that has not yet been written back to the backing
- store.
THE WORKFLOW
- Generally, all "git" operations work on the index file.
- Some operations work purely on the index file (showing the cur
- rent state of the index), but most operations move data to and
- from the index file. Either from the database or from the working
- directory. Thus there are four main combinations:
- 1) working directory -> index
- You update the index with information from the working di
- rectory with the git-update-index(1) command. You generally up
- date the index information by just specifying the filename you
- want to update, like so:
git-update-index filename - but to avoid common mistakes with filename globbing etc,
- the command will not normally add totally new entries or remove
- old entries, i.e. it will normally just update existing cache en
- tries.
- To tell git that yes, you really do realize that certain
- files no longer exist, or that new files should be added, you
- should use the --remove and --add flags respectively.
- NOTE! A --remove flag does not mean that subsequent file
- names will necessarily be removed: if the files still exist in
- your directory structure, the index will be updated with their
- new status, not removed. The only thing --remove means is that
- update-cache will be considering a removed file to be a valid
- thing, and if the file really does not exist any more, it will
- update the index accordingly.
- As a special case, you can also do git-update-index --re
- fresh, which will refresh the "stat" information of each index to
- match the current stat information. It will not update the object
- status itself, and it will only update the fields that are used
- to quickly test whether an object still matches its old backing
- store object.
- 2) index -> object database
- You write your current index file to a "tree" object with
- the program
git-write-tree - that doesn't come with any options - it will just write
- out the current index into the set of tree objects that describe
- that state, and it will return the name of the resulting top-lev
- el tree. You can use that tree to re-generate the index at any
- time by going in the other direction:
- 3) object database -> index
- You read a "tree" file from the object database, and use
- that to populate (and overwrite - don't do this if your index
- contains any unsaved state that you might want to restore later!)
- your current index. Normal operation is just
git-read-tree <sha1 of tree> - and your index file will now be equivalent to the tree
- that you saved earlier. However, that is only your index file:
- your working directory contents have not been modified.
- 4) index -> working directory
- You update your working directory from the index by
- "checking out" files. This is not a very common operation, since
- normally you'd just keep your files updated, and rather than
- write to your working directory, you'd tell the index files about
- the changes in your working directory (i.e. git-update-index).
- However, if you decide to jump to a new version, or check
- out somebody else's version, or just restore a previous tree,
- you'd populate your index file with read-tree, and then you need
- to check out the result with
git-checkout-index filename - or, if you want to check out all of the index, use -a.
- NOTE! git-checkout-index normally refuses to overwrite old
- files, so if you have an old version of the tree already checked
- out, you will need to use the "-f" flag (before the "-a" flag or
- the filename) to force the checkout.
- Finally, there are a few odds and ends which are not pure
- ly moving from one representation to the other:
- 5) Tying it all together
- To commit a tree you have instantiated with "git-write
- tree", you'd create a "commit" object that refers to that tree
- and the history behind it - most notably the "parent" commits
- that preceded it in history.
- Normally a "commit" has one parent: the previous state of
- the tree before a certain change was made. However, sometimes it
- can have two or more parent commits, in which case we call it a
- "merge", due to the fact that such a commit brings together
- ("merges") two or more previous states represented by other com
- mits.
- In other words, while a "tree" represents a particular di
- rectory state of a working directory, a "commit" represents that
- state in "time", and explains how we got there.
- You create a commit object by giving it the tree that de
- scribes the state at the time of the commit, and a list of par
- ents:
git-commit-tree <tree> -p <parent> [-p <parent2> ..] - and then giving the reason for the commit on stdin (either
- through redirection from a pipe or file, or by just typing it at
- the tty).
- git-commit-tree will return the name of the object that
- represents that commit, and you should save it away for later
- use. Normally, you'd commit a new HEAD state, and while git
- doesn't care where you save the note about that state, in prac
- tice we tend to just write the result to the file pointed at by
- .git/HEAD, so that we can always see what the last committed
- state was.
- Here is an ASCII art by Jon Loeliger that illustrates how
- various pieces fit together.
commit-treecommit obj+----+V V+-----------+
| Object DB
| Backing
| Store
+-----------+^write-treetree obj| | read-tree
| | tree objV+-----------+
| Index
| "cache"
+-----------+update-index ^blob obj - checkout-index -u | | checkout-index
- stat | | blob obj
V
- +-----------+
| Working
| Directory
+-----------+ - 6) Examining the data
- You can examine the data represented in the object
- database and the index with various helper tools. For every ob
- ject, you can use git-cat-file(1) to examine details about the
- object:
git-cat-file -t <objectname> - shows the type of the object, and once you have the type
- (which is usually implicit in where you find the object), you can
- use
git-cat-file blob|tree|commit|tag <objectname> - to show its contents. NOTE! Trees have binary content, and
- as a result there is a special helper for showing that content,
- called git-ls-tree, which turns the binary content into a more
- easily readable form.
- It's especially instructive to look at "commit" objects,
- since those tend to be small and fairly self-explanatory. In par
- ticular, if you follow the convention of having the top commit
- name in .git/HEAD, you can do
git-cat-file commit HEAD - to see what the top commit was.
- 7) Merging multiple trees
- Git helps you do a three-way merge, which you can expand
- to n-way by repeating the merge procedure arbitrary times until
- you finally "commit" the state. The normal situation is that
- you'd only do one three-way merge (two parents), and commit it,
- but if you like to, you can do multiple parents in one go.
- To do a three-way merge, you need the two sets of "commit"
- objects that you want to merge, use those to find the closest
- common parent (a third "commit" object), and then use those com
- mit objects to find the state of the directory ("tree" object) at
- these points.
- To get the "base" for the merge, you first look up the
- common parent of two commits with
git-merge-base <commit1> <commit2> - which will return you the commit they are both based on.
- You should now look up the "tree" objects of those commits, which
- you can easily do with (for example)
git-cat-file commit <commitname> | head -1 - since the tree object information is always the first line
- in a commit object.
- Once you know the three trees you are going to merge (the
- one "original" tree, aka the common case, and the two "result"
- trees, aka the branches you want to merge), you do a "merge" read
- into the index. This will complain if it has to throw away your
- old index contents, so you should make sure that you've committed
- those - in fact you would normally always do a merge against your
- last commit (which should thus match what you have in your cur
- rent index anyway).
- To do the merge, do
git-read-tree -m -u <origtree> <yourtree> <targettree> - which will do all trivial merge operations for you direct
- ly in the index file, and you can just write the result out with
- git-write-tree.
- Historical note. We did not have -u facility when this
- section was first written, so we used to warn that the merge is
- done in the index file, not in your working tree, and your work
- ing tree will not match your index after this step. This is no
- longer true. The above command, thanks to -u option, updates your
- working tree with the merge results for paths that have been
- trivially merged.
- 8) Merging multiple trees, continued
- Sadly, many merges aren't trivial. If there are files that
- have been added.moved or removed, or if both branches have modi
- fied the same file, you will be left with an index tree that con
- tains "merge entries" in it. Such an index tree can NOT be writ
- ten out to a tree object, and you will have to resolve any such
- merge clashes using other tools before you can write out the re
- sult.
- You can examine such index state with git-ls-files --un
- merged command. An example:
$ git-read-tree -m $orig HEAD $target
$ git-ls-files --unmerged
100644 263414f423d0e4d70dae8fe53fa34614ff3e2860 1hello.c
100644 06fa6a24256dc7e560efa5687fa84b51f0263c3a 2hello.c
100644 cc44c73eb783565da5831b4d820c962954019b69 3hello.c - Each line of the git-ls-files --unmerged output begins
- with the blob mode bits, blob SHA1, stage number, and the file
- name. The stage number is git's way to say which tree it came
- from: stage 1 corresponds to $orig tree, stage 2 HEAD tree, and
- stage3 $target tree.
- Earlier we said that trivial merges are done inside git
- read-tree -m. For example, if the file did not change from $orig
- to HEAD nor $target, or if the file changed from $orig to HEAD
- and $orig to $target the same way, obviously the final outcome is
- what is in HEAD. What the above example shows is that file hel
- lo.c was changed from $orig to HEAD and $orig to $target in a
- different way. You could resolve this by running your favorite
- 3-way merge program, e.g. diff3 or merge, on the blob objects
- from these three stages yourself, like this:
$ git-cat-file blob 263414f... >hello.c~1
$ git-cat-file blob 06fa6a2... >hello.c~2
$ git-cat-file blob cc44c73... >hello.c~3
$ merge hello.c~2 hello.c~1 hello.c~3 - This would leave the merge result in hello.c~2 file, along
- with conflict markers if there are conflicts. After verifying the
- merge result makes sense, you can tell git what the final merge
- result for this file is by:
mv -f hello.c~2 hello.c
git-update-index hello.c - When a path is in unmerged state, running git-update-index
- for that path tells git to mark the path resolved.
- The above is the description of a git merge at the lowest
- level, to help you understand what conceptually happens under the
- hood. In practice, nobody, not even git itself, uses three git
- cat-file for this. There is git-merge-index program that extracts
- the stages to temporary files and calls a "merge" script on it:
git-merge-index git-merge-one-file hello.c - and that is what higher level git resolve is implemented
- with.
AUTHORS
- · git's founding father is Linus Torvalds <torvalds@os
- dl.org>.
- · The current git nurse is Junio C Hamano
- <junkio@cox.net>.
- · The git potty was written by Andres Ericsson
- <ae@op5.se>.
- · General upbringing is handled by the git-list
- <git@vger.kernel.org>.
DOCUMENTATION
- The documentation for git suite was started by David
- Greaves <david@dgreaves.com>, and later enhanced greatly by the
- contributors on the git-list <git@vger.kernel.org>.
GIT
Part of the git(7) suite
REFERENCES
- 1. tutorial
- tutorial.html
- 2. Everyday Git
everyday.html - 3. CVS migration
cvs-migration.html - 4. Core tutorial
core-tutorial.html - 5. howto
howto-index.html - 6. repository layout
repository-layout.html - 7. hooks
hooks.html - 8. glossary
glossary.html
03/08/2007