dlagtm(3)

NAME

DLAGTM - perform a matrix-vector product of the form B :=
alpha * A * X + beta * B where A is a tridiagonal matrix of or
der N, B and X are N by NRHS matrices, and alpha and beta are re
al scalars, each of which may be 0., 1., or -1

SYNOPSIS

SUBROUTINE  DLAGTM(  TRANS,  N, NRHS, ALPHA, DL, D, DU, X,
LDX, BETA, B, LDB )
    CHARACTER      TRANS
    INTEGER        LDB, LDX, N, NRHS
    DOUBLE         PRECISION ALPHA, BETA
    DOUBLE         PRECISION B( LDB, * ), D( * ), DL( * ),
DU( * ), X( LDX, * )

PURPOSE

DLAGTM performs a matrix-vector product of the form B :=
alpha * A * X + beta * B where A is a tridiagonal matrix of order
N, B and X are N by NRHS matrices, and alpha and beta are real
scalars, each of which may be 0., 1., or -1.

ARGUMENTS

TRANS (input) CHARACTER
Specifies the operation applied to A. = 'N': No
transpose, B := alpha * A * X + beta * B
= 'T': Transpose, B := alpha * A'* X + beta *
B
= 'C': Conjugate transpose = Transpose
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number
of columns of the matrices X and B.
ALPHA (input) DOUBLE PRECISION
The scalar alpha. ALPHA must be 0., 1., or -1.;
otherwise, it is assumed to be 0.
DL (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) sub-diagonal elements of T.
D (input) DOUBLE PRECISION array, dimension (N)
The diagonal elements of T.
DU (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) super-diagonal elements of T.
X (input) DOUBLE PRECISION array, dimension
(LDX,NRHS)
The N by NRHS matrix X. LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(N,1).
BETA (input) DOUBLE PRECISION
The scalar beta. BETA must be 0., 1., or -1.;
otherwise, it is assumed to be 1.
B (input/output) DOUBLE PRECISION array, dimension
(LDB,NRHS)
On entry, the N by NRHS matrix B. On exit, B is
overwritten by the matrix expression B := alpha * A * X + beta *
B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >=
max(N,1).
LAPACK version 3.0 15 June 2000
Copyright © 2010-2025 Platon Technologies, s.r.o.           Index | Man stránky | tLDP | Dokumenty | Utilitky | O projekte
Design by styleshout