dlasv2(3)

NAME

DLASV2 - compute the singular value decomposition of a
2-by-2 triangular matrix [ F G ] [ 0 H ]

SYNOPSIS

SUBROUTINE  DLASV2(  F, G, H, SSMIN, SSMAX, SNR, CSR, SNL,
CSL )
    DOUBLE         PRECISION CSL, CSR, F, G, H, SNL,  SNR,
SSMAX, SSMIN

PURPOSE

DLASV2 computes the singular value decomposition of a
2-by-2 triangular matrix [ F G ] [ 0 H ]. On return, abs(SSMAX)
is the larger singular value, abs(SSMIN) is the smaller singular
value, and (CSL,SNL) and (CSR,SNR) are the left and right singu
lar vectors for abs(SSMAX), giving the decomposition

[ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0
]
[-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN
].

ARGUMENTS

F (input) DOUBLE PRECISION
The (1,1) element of the 2-by-2 matrix.
G (input) DOUBLE PRECISION
The (1,2) element of the 2-by-2 matrix.
H (input) DOUBLE PRECISION
The (2,2) element of the 2-by-2 matrix.
SSMIN (output) DOUBLE PRECISION
abs(SSMIN) is the smaller singular value.
SSMAX (output) DOUBLE PRECISION
abs(SSMAX) is the larger singular value.
SNL (output) DOUBLE PRECISION
CSL (output) DOUBLE PRECISION The vector (CSL,
SNL) is a unit left singular vector for the singular value
abs(SSMAX).
SNR (output) DOUBLE PRECISION
CSR (output) DOUBLE PRECISION The vector (CSR,
SNR) is a unit right singular vector for the singular value
abs(SSMAX).

FURTHER DETAILS

Any input parameter may be aliased with any output parame
ter.
Barring over/underflow and assuming a guard digit in sub
traction, all output quantities are correct to within a few units
in the last place (ulps).
In IEEE arithmetic, the code works correctly if one matrix
element is infinite.
Overflow will not occur unless the largest singular value
itself overflows or is within a few ulps of overflow. (On ma
chines with partial overflow, like the Cray, overflow may occur
if the largest singular value is within a factor of 2 of over
flow.)
Underflow is harmless if underflow is gradual. Otherwise,
results may correspond to a matrix modified by perturbations of
size near the underflow threshold.
LAPACK version 3.0 15 June 2000
Copyright © 2010-2025 Platon Technologies, s.r.o.           Home | Man pages | tLDP | Documents | Utilities | About
Design by styleshout