slagv2(3)
NAME
- SLAGV2 - compute the Generalized Schur factorization of a
- real 2-by-2 matrix pencil (A,B) where B is upper triangular
SYNOPSIS
SUBROUTINE SLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA,
CSL, SNL, CSR, SNR )
INTEGER LDA, LDB
REAL CSL, CSR, SNL, SNR
REAL A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ),
B( LDB, * ), BETA( 2 )
PURPOSE
- SLAGV2 computes the Generalized Schur factorization of a
- real 2-by-2 matrix pencil (A,B) where B is upper triangular. This
- routine computes orthogonal (rotation) matrices given by CSL, SNL
- and CSR, SNR such that
- 1) if the pencil (A,B) has two real eigenvalues (include
- 0/0 or 1/0
- types), then
- [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
[ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
- [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
[ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ],
- 2) if the pencil (A,B) has a pair of complex conjugate
- eigenvalues,
- then
- [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
[ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
- [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
[ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ]
- where b11 >= b22 > 0.
ARGUMENTS
- A (input/output) REAL array, dimension (LDA, 2)
- On entry, the 2 x 2 matrix A. On exit, A is over
- written by the ``A-part'' of the generalized Schur form.
- LDA (input) INTEGER
- THe leading dimension of the array A. LDA >= 2.
- B (input/output) REAL array, dimension (LDB, 2)
- On entry, the upper triangular 2 x 2 matrix B. On
- exit, B is overwritten by the ``B-part'' of the generalized Schur
- form.
- LDB (input) INTEGER
- THe leading dimension of the array B. LDB >= 2.
- ALPHAR (output) REAL array, dimension (2)
- ALPHAI (output) REAL array, dimension (2) BETA
- (output) REAL array, dimension (2) (ALPHAR(k)+i*ALPHAI(k))/BE
- TA(k) are the eigenvalues of the pencil (A,B), k=1,2, i =
- sqrt(-1). Note that BETA(k) may be zero.
- CSL (output) REAL
- The cosine of the left rotation matrix.
- SNL (output) REAL
- The sine of the left rotation matrix.
- CSR (output) REAL
- The cosine of the right rotation matrix.
- SNR (output) REAL
- The sine of the right rotation matrix.
FURTHER DETAILS
- Based on contributions by
- Mark Fahey, Department of Mathematics, Univ. of Ken
- tucky, USA
- LAPACK version 3.0 15 June 2000