zggsvd(3)

NAME

ZGGSVD - compute the generalized singular value decomposi
tion (GSVD) of an M-by-N complex matrix A and P-by-N complex ma
trix B

SYNOPSIS

SUBROUTINE ZGGSVD( JOBU, JOBV, JOBQ, M, N,  P,  K,  L,  A,
LDA,  B,  LDB,  ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, RWORK,
IWORK, INFO )
    CHARACTER      JOBQ, JOBU, JOBV
    INTEGER        INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M,
N, P
    INTEGER        IWORK( * )
    DOUBLE         PRECISION ALPHA( * ), BETA( * ), RWORK(
* )
    COMPLEX*16     A( LDA, * ), B( LDB, * ), Q( LDQ, *  ),
U( LDU, * ), V( LDV, * ), WORK( * )

PURPOSE

ZGGSVD computes the generalized singular value decomposi
tion (GSVD) of an M-by-N complex matrix A and P-by-N complex ma
trix B:
U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R )
where U, V and Q are unitary matrices, and Z' means the
conjugate transpose of Z. Let K+L = the effective numerical rank
of the matrix (A',B')', then R is a (K+L)-by-(K+L) nonsingular
upper triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L)
"diagonal" matrices and of the following structures, respective
ly:
If M-K-L >= 0,

K L
D1 = K ( I 0 )
L ( 0 C )
M-K-L ( 0 0 )

K L
D2 = L ( 0 S )
P-L ( 0 0 )

N-K-L K L
( 0 R ) = K ( 0 R11 R12 )
L ( 0 0 R22 )
where

C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
S = diag( BETA(K+1), ... , BETA(K+L) ),
C**2 + S**2 = I.
R is stored in A(1:K+L,N-K-L+1:N) on exit.
If M-K-L < 0,

K M-K K+L-M
D1 = K ( I 0 0 )
M-K ( 0 C 0 )

K M-K K+L-M
D2 = M-K ( 0 S 0 )
K+L-M ( 0 0 I )
P-L ( 0 0 0 )

N-K-L K M-K K+L-M
( 0 R ) = K ( 0 R11 R12 R13 )
M-K ( 0 0 R22 R23 )
K+L-M ( 0 0 0 R33 )
where

C = diag( ALPHA(K+1), ... , ALPHA(M) ),
S = diag( BETA(K+1), ... , BETA(M) ),
C**2 + S**2 = I.
(R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33
is stored
( 0 R22 R23 )
in B(M-K+1:L,N+M-K-L+1:N) on exit.
The routine computes C, S, R, and optionally the unitary
transformation matrices U, V and Q.
In particular, if B is an N-by-N nonsingular matrix, then
the GSVD of A and B implicitly gives the SVD of A*inv(B):
A*inv(B) = U*(D1*inv(D2))*V'.
If ( A',B')' has orthnormal columns, then the GSVD of A
and B is also equal to the CS decomposition of A and B. Further
more, the GSVD can be used to derive the solution of the eigen
value problem:
A'*A x = lambda* B'*B x.
In some literature, the GSVD of A and B is presented in
the form
U'*A*X = ( 0 D1 ), V'*B*X = ( 0 D2 )
where U and V are orthogonal and X is nonsingular, and D1
and D2 are ``diagonal''. The former GSVD form can be converted
to the latter form by taking the nonsingular matrix X as

X = Q*( I 0 )
( 0 inv(R) )

ARGUMENTS

JOBU (input) CHARACTER*1
= 'U': Unitary matrix U is computed;
= 'N': U is not computed.
JOBV (input) CHARACTER*1
= 'V': Unitary matrix V is computed;
= 'N': V is not computed.
JOBQ (input) CHARACTER*1
= 'Q': Unitary matrix Q is computed;
= 'N': Q is not computed.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N
>= 0.
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
K (output) INTEGER
L (output) INTEGER On exit, K and L specify
the dimension of the subblocks described in Purpose. K + L = ef
fective numerical rank of (A',B')'.
A (input/output) COMPLEX*16 array, dimension (LDA,N)
On entry, the M-by-N matrix A. On exit, A con
tains the triangular matrix R, or part of R. See Purpose for de
tails.
LDA (input) INTEGER
The leading dimension of the array A. LDA >=
max(1,M).
B (input/output) COMPLEX*16 array, dimension (LDB,N)
On entry, the P-by-N matrix B. On exit, B con
tains part of the triangular matrix R if M-K-L < 0. See Purpose
for details.
LDB (input) INTEGER
The leading dimension of the array B. LDB >=
max(1,P).
ALPHA (output) DOUBLE PRECISION array, dimension (N)
BETA (output) DOUBLE PRECISION array, dimension
(N) On exit, ALPHA and BETA contain the generalized singular val
ue pairs of A and B; ALPHA(1:K) = 1,
BETA(1:K) = 0, and if M-K-L >= 0, ALPHA(K+1:K+L)
= C,
BETA(K+1:K+L) = S, or if M-K-L < 0, ALPHA(K+1:M)=
C, ALPHA(M+1:K+L)= 0
BETA(K+1:M) = S, BETA(M+1:K+L) = 1 and AL
PHA(K+L+1:N) = 0
BETA(K+L+1:N) = 0
U (output) COMPLEX*16 array, dimension (LDU,M)
If JOBU = 'U', U contains the M-by-M unitary ma
trix U. If JOBU = 'N', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >=
max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.
V (output) COMPLEX*16 array, dimension (LDV,P)
If JOBV = 'V', V contains the P-by-P unitary ma
trix V. If JOBV = 'N', V is not referenced.
LDV (input) INTEGER
The leading dimension of the array V. LDV >=
max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.
Q (output) COMPLEX*16 array, dimension (LDQ,N)
If JOBQ = 'Q', Q contains the N-by-N unitary ma
trix Q. If JOBQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >=
max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.
WORK (workspace) COMPLEX*16 array, dimension
(max(3*N,M,P)+N)
RWORK (workspace) DOUBLE PRECISION array, dimension
(2*N)
IWORK (workspace/output) INTEGER array, dimension (N)
On exit, IWORK stores the sorting information.
More precisely, the following loop will sort ALPHA for I = K+1,
min(M,K+L) swap ALPHA(I) and ALPHA(IWORK(I)) endfor such that AL
PHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
INFO (output)INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an ille
gal value.
> 0: if INFO = 1, the Jacobi-type procedure
failed to converge. For further details, see subroutine ZTGSJA.

PARAMETERS

TOLA DOUBLE PRECISION
TOLB DOUBLE PRECISION TOLA and TOLB are the
thresholds to determine the effective rank of (A',B')'. General
ly, they are set to TOLA = MAX(M,N)*norm(A)*MAZHEPS, TOLB =
MAX(P,N)*norm(B)*MAZHEPS. The size of TOLA and TOLB may affect
the size of backward errors of the decomposition.
Further Details ===============
2-96 Based on modifications by Ming Gu and Huan
Ren, Computer Science Division, University of California at
Berkeley, USA
LAPACK version 3.0 15 June 2000
Copyright © 2010-2025 Platon Technologies, s.r.o.           Index | Man stránky | tLDP | Dokumenty | Utilitky | O projekte
Design by styleshout