slags2(3)
NAME
- SLAGS2 - compute 2-by-2 orthogonal matrices U, V and Q,
- such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) (
- 0 A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x
- x ) or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0 )*Q = ( x x )
- ( A2 A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 )
- ( 0 x ) The rows of the transformed A and B are parallel, where
- U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) (
- -SNV CSV ) ( -SNQ CSQ ) Z' denotes the transpose of Z
SYNOPSIS
SUBROUTINE SLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU,
SNU, CSV, SNV, CSQ, SNQ )
LOGICAL UPPER
REAL A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV,
SNQ, SNU, SNV
PURPOSE
- SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q,
- such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0
- A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x
- ) or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2
- A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x
- ) The rows of the transformed A and B are parallel, where U = (
- CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV
- CSV ) ( -SNQ CSQ ) Z' denotes the transpose of Z.
ARGUMENTS
- UPPER (input) LOGICAL
- = .TRUE.: the input matrices A and B are upper
- triangular.
= .FALSE.: the input matrices A and B are lower
- triangular.
- A1 (input) REAL
- A2 (input) REAL A3 (input) REAL On en
- try, A1, A2 and A3 are elements of the input 2-by-2 upper (lower)
- triangular matrix A.
- B1 (input) REAL
- B2 (input) REAL B3 (input) REAL On en
- try, B1, B2 and B3 are elements of the input 2-by-2 upper (lower)
- triangular matrix B.
- CSU (output) REAL
- SNU (output) REAL The desired orthogonal ma
- trix U.
- CSV (output) REAL
- SNV (output) REAL The desired orthogonal ma
- trix V.
- CSQ (output) REAL
- SNQ (output) REAL The desired orthogonal ma
- trix Q.
- LAPACK version 3.0 15 June 2000