slags2(3)

NAME

SLAGS2 - compute 2-by-2 orthogonal matrices U, V and Q,
such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) (
0 A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x
x ) or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0 )*Q = ( x x )
( A2 A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 )
( 0 x ) The rows of the transformed A and B are parallel, where
U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) (
-SNV CSV ) ( -SNQ CSQ ) Z' denotes the transpose of Z

SYNOPSIS

SUBROUTINE  SLAGS2(  UPPER,  A1,  A2, A3, B1, B2, B3, CSU,
SNU, CSV, SNV, CSQ, SNQ )
    LOGICAL        UPPER
    REAL           A1, A2, A3, B1, B2, B3, CSQ, CSU,  CSV,
SNQ, SNU, SNV

PURPOSE

SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q,
such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0
A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x
) or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2
A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x
) The rows of the transformed A and B are parallel, where U = (
CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV
CSV ) ( -SNQ CSQ ) Z' denotes the transpose of Z.

ARGUMENTS

UPPER (input) LOGICAL
= .TRUE.: the input matrices A and B are upper
triangular.
= .FALSE.: the input matrices A and B are lower
triangular.
A1 (input) REAL
A2 (input) REAL A3 (input) REAL On en
try, A1, A2 and A3 are elements of the input 2-by-2 upper (lower)
triangular matrix A.
B1 (input) REAL
B2 (input) REAL B3 (input) REAL On en
try, B1, B2 and B3 are elements of the input 2-by-2 upper (lower)
triangular matrix B.
CSU (output) REAL
SNU (output) REAL The desired orthogonal ma
trix U.
CSV (output) REAL
SNV (output) REAL The desired orthogonal ma
trix V.
CSQ (output) REAL
SNQ (output) REAL The desired orthogonal ma
trix Q.
LAPACK version 3.0 15 June 2000
Copyright © 2010-2025 Platon Technologies, s.r.o.           Index | Man stránky | tLDP | Dokumenty | Utilitky | O projekte
Design by styleshout